计算生物学
转录组
生物
计算机科学
遗传学
基因表达
基因
作者
Chuanchao Zhang,Lequn Wang,Qianqian Shi
标识
DOI:10.1016/j.csbj.2024.05.028
摘要
Spatial transcriptomics techniques, while measuring gene expression, retain spatial location information, aiding in situ studies of organismal tissue architecture and the progression of pathological processes. These techniques generate vast amounts of omics data, necessitating the development of computational methods to reveal the underlying tissue microenvironment heterogeneity. The main directions in spatial transcriptomics data analysis are spatial domain detection and spatial deconvolution, which can identify spatial functional regions and parse the distribution of cell types in spatial transcriptomics data by integrating single-cell transcriptomics data. In these two research directions, many computational methods have been successively proposed. This article will categorize them into three types: machine learning-based methods, probabilistic models-based methods, and deep learning-based methods. It will list and discuss the representative algorithms of each type along with their advantages and disadvantages and describe the datasets and evaluation metrics used to assess these computational methods, facilitating researchers in selecting suitable computational methods according to their research needs. Finally, combining the latest technological developments and the advantages and disadvantages of current algorithms, this article will look forward to the future directions of computational method development.
科研通智能强力驱动
Strongly Powered by AbleSci AI