亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel insight on input variable and time lag selection in daily streamflow forecasting using deep learning models

水流 滞后 变量(数学) 时滞 选择(遗传算法) 计量经济学 水流 计算机科学 环境科学 统计 人工智能 数学 地理 地图学 流域 计算机网络 数学分析
作者
Amina Khatun,M.N. Nisha,Siddharth G. Chatterjee,Venkataramana Sridhar
出处
期刊:Environmental Modelling and Software [Elsevier]
卷期号:: 106126-106126
标识
DOI:10.1016/j.envsoft.2024.106126
摘要

This study investigates the feasibility of using hybrid models namely Convolutional Neural Network (CNN)-Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN)-Gated Recurrent Unit (GRU), for short-to-medium range streamflow forecasting in the Mahanadi River basin in India. The performance of these hybrid models is compared with that of standalone models. It investigates the impact of selected parameters and associated time lags on the model performance and offers valuable insights into the use of hybrid models for runoff simulation. The hybrid CNN-LSTM model proves to be robust in capturing the overall time series and the typical high peak flows in both the correlation-based and constant lag cases. Also, the upstream discharges play a significant role in improving the streamflow forecasting. Furthermore, the consideration of all input variables with a constant time lag equal to the basin lag time may yield better flood forecasts, even in cases where computational resources are limited.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
henrychyeung发布了新的文献求助10
1秒前
皎皎发布了新的文献求助10
6秒前
16秒前
30秒前
包佳梁完成签到,获得积分10
35秒前
henrychyeung完成签到,获得积分10
41秒前
1分钟前
1分钟前
筱灬发布了新的文献求助10
1分钟前
2分钟前
狂野乌冬面完成签到 ,获得积分10
2分钟前
桐桐应助jjjjjj采纳,获得10
2分钟前
2分钟前
太叔夜南发布了新的文献求助10
2分钟前
太叔夜南完成签到,获得积分10
3分钟前
3分钟前
3分钟前
李剑鸿发布了新的文献求助200
3分钟前
炫哥IRIS完成签到,获得积分10
3分钟前
斯文败类应助执着夏山采纳,获得10
4分钟前
爆米花应助炫哥IRIS采纳,获得10
4分钟前
Hello应助执着夏山采纳,获得10
4分钟前
充电宝应助科研通管家采纳,获得10
4分钟前
4分钟前
执着夏山发布了新的文献求助10
4分钟前
5分钟前
jjjjjj发布了新的文献求助10
5分钟前
5分钟前
执着夏山发布了新的文献求助10
5分钟前
所得皆所愿完成签到 ,获得积分10
5分钟前
执着夏山完成签到,获得积分10
5分钟前
领导范儿应助李剑鸿采纳,获得30
6分钟前
科研垃圾完成签到,获得积分20
8分钟前
8分钟前
科研垃圾发布了新的文献求助10
8分钟前
日渐消瘦完成签到 ,获得积分10
8分钟前
wanci应助科研通管家采纳,获得30
8分钟前
妄自发布了新的文献求助10
9分钟前
妄自完成签到,获得积分10
9分钟前
迅速的蜡烛完成签到 ,获得积分10
9分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146739
求助须知:如何正确求助?哪些是违规求助? 2798045
关于积分的说明 7826576
捐赠科研通 2454566
什么是DOI,文献DOI怎么找? 1306391
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527