Dual-stream multi-dependency graph neural network enables precise cancer survival analysis

推论 计算机科学 人工智能 人工神经网络 图形 稳健性(进化) 依赖关系图 模式识别(心理学) 机器学习 理论计算机科学 生物化学 化学 基因
作者
Zhikang Wang,Jiani Ma,Qian Gao,Chris Bain,Seiya Imoto,Píetro Lió,Hongmin Cai,Hao Chen,Jiangning Song
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:97: 103252-103252 被引量:7
标识
DOI:10.1016/j.media.2024.103252
摘要

Histopathology image-based survival prediction aims to provide a precise assessment of cancer prognosis and can inform personalized treatment decision-making in order to improve patient outcomes. However, existing methods cannot automatically model the complex correlations between numerous morphologically diverse patches in each whole slide image (WSI), thereby preventing them from achieving a more profound understanding and inference of the patient status. To address this, here we propose a novel deep learning framework, termed dual-stream multi-dependency graph neural network (DM-GNN), to enable precise cancer patient survival analysis. Specifically, DM-GNN is structured with the feature updating and global analysis branches to better model each WSI as two graphs based on morphological affinity and global co-activating dependencies. As these two dependencies depict each WSI from distinct but complementary perspectives, the two designed branches of DM-GNN can jointly achieve the multi-view modeling of complex correlations between the patches. Moreover, DM-GNN is also capable of boosting the utilization of dependency information during graph construction by introducing the affinity-guided attention recalibration module as the readout function. This novel module offers increased robustness against feature perturbation, thereby ensuring more reliable and stable predictions. Extensive benchmarking experiments on five TCGA datasets demonstrate that DM-GNN outperforms other state-of-the-art methods and offers interpretable prediction insights based on the morphological depiction of high-attention patches. Overall, DM-GNN represents a powerful and auxiliary tool for personalized cancer prognosis from histopathology images and has great potential to assist clinicians in making personalized treatment decisions and improving patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
tianzhanggong完成签到,获得积分10
1秒前
www发布了新的文献求助10
2秒前
852应助lihanyan666采纳,获得10
2秒前
李金玉发布了新的文献求助20
2秒前
正好完成签到,获得积分10
3秒前
4秒前
4秒前
菌菇发布了新的文献求助10
5秒前
怕黑冰烟完成签到 ,获得积分10
6秒前
6秒前
CipherSage应助why采纳,获得10
7秒前
寒冷书竹发布了新的文献求助10
9秒前
yufeng发布了新的文献求助10
9秒前
张爱学发布了新的文献求助10
9秒前
Lucas应助guan采纳,获得10
9秒前
笨笨电灯胆完成签到,获得积分20
10秒前
英俊的铭应助就叫十一吧采纳,获得10
11秒前
搞怪面包完成签到,获得积分10
11秒前
坚定的寄琴完成签到,获得积分10
11秒前
NexusExplorer应助落月铭采纳,获得10
12秒前
wanjinlei完成签到 ,获得积分10
13秒前
斯文静竹发布了新的文献求助30
13秒前
14秒前
爆米花应助sun采纳,获得10
14秒前
FashionBoy应助时倾采纳,获得10
16秒前
16秒前
16秒前
aojoo发布了新的文献求助10
17秒前
erdongsir完成签到,获得积分10
18秒前
慕青应助miao采纳,获得10
18秒前
CodeCraft应助复杂若男采纳,获得10
18秒前
19秒前
19秒前
19秒前
why发布了新的文献求助10
19秒前
斯文败类应助wenbin采纳,获得10
19秒前
20秒前
郭小胖14发布了新的文献求助10
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961675
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139238
捐赠科研通 3240579
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803326