Who Made That Decision and Why? Users’ Perceptions of Human Versus AI Decision-Making and the Power of Explainable-AI

功率(物理) 感知 心理学 临床决策 计算机科学 医学 家庭医学 神经科学 物理 量子力学
作者
Avital Shulner Tal,Tsvi Kuflik,Doron Kliger,Azzurra Mancini
出处
期刊:International Journal of Human-computer Interaction [Informa]
卷期号:: 1-18 被引量:2
标识
DOI:10.1080/10447318.2024.2348843
摘要

With the advent of artificial intelligence (AI) based systems, a new era has begun. Decisions that were once made by humans are now increasingly being made by these advanced systems, with the inevitable consequence of our growing reliance on AI in many aspects of our lives. At the same time, the opaque nature of AI-based systems and the possibility of unintentional or hidden discriminatory practices and biases raises profound questions not only about the mechanics of AI, but also about how users perceive the fairness of these systems. We hypothesize that providing various explanations for AI decision-making processes and output may enhance users' fairness perceptions and make them trust the system and adopt its decisions. Hence, we devised an online between-subject experiment that explores users' fairness and comprehension perceptions of AI systems with respect to the explanations provided by the system, employing a case study of a managerial decision in the human resources (HR) domain. We manipulated (i) the decision-maker (AI or human); (ii) the input (candidate characteristics); (iii) the output (recommendation valence), and (iv) the explanation style. We examined the effect of the various manipulations (and individuals' demographic and personality characteristics) using multivariate ordinal regression. We also performed a multi-level analysis of experiment components to examine the effects of the decision-maker type, explanation style, and their combination. The results suggest three main conclusions. The first conclusion is that there is a gap in users' fairness and comprehension perception of AI-based decision making systems compared to human decision making. The second conclusion is that knowing that an AI-based system provided the decisions negatively affects users' fairness and comprehension perceptions, compared to knowing that humans made the decision. Finally, the third conclusion is that providing case-based, certification-based, or sensitivity-based explanations can narrow this gap and may even eliminate it. Additionally, we found that users' fairness and comprehension perceptions are influenced by a variety of factors such as the input, output, and explanation provided by the system, as well as by individuals' age, education, computer skills, and personality. Our findings may help to understand when and how to use explanations to improve users' perceptions regarding AI-based decision-making. CCS CONCEPTS • Human computer interaction (HCI) → HCI design and evaluation methods → User studies • Human-centered computing → Human computer interaction (HCI) → Empirical studies in HCI • Applied computing → Law, social and behavioral sciences → Sociology
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
OFish完成签到,获得积分10
1秒前
2秒前
自然完成签到,获得积分10
3秒前
kohu发布了新的文献求助10
4秒前
我要7甜瓜完成签到,获得积分10
4秒前
4秒前
chunyeliangchuan完成签到,获得积分10
5秒前
5秒前
啊锤你头发布了新的文献求助10
5秒前
5秒前
田様应助土豆金采纳,获得10
5秒前
6秒前
7秒前
怪QwQ完成签到,获得积分10
7秒前
雨点发布了新的文献求助10
7秒前
8秒前
8秒前
cui发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
11秒前
研友_8y2G0L发布了新的文献求助10
11秒前
13秒前
777发布了新的文献求助10
14秒前
852应助WQ采纳,获得10
14秒前
在水一方应助变换大师Abel采纳,获得10
15秒前
16秒前
八乙基环辛四烯完成签到,获得积分10
17秒前
17秒前
18秒前
xuanzeng发布了新的文献求助10
18秒前
mhl11应助bigfishsilence采纳,获得10
19秒前
20秒前
隐形曼青应助SAN采纳,获得10
20秒前
99999sun发布了新的文献求助10
20秒前
20秒前
土豆金发布了新的文献求助10
20秒前
iui飞发布了新的文献求助10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3300441
求助须知:如何正确求助?哪些是违规求助? 2935034
关于积分的说明 8471600
捐赠科研通 2608634
什么是DOI,文献DOI怎么找? 1424341
科研通“疑难数据库(出版商)”最低求助积分说明 661991
邀请新用户注册赠送积分活动 645653