纳米复合材料
材料科学
韧性
氯乙烯
复合材料
极限抗拉强度
分子动力学
单体
分散性
聚合物
化学工程
高分子化学
化学
共聚物
计算化学
工程类
作者
Jiajia Qi,Zhengxuan Shao,Yujun Sun,Zhirong Wang,Qionghai Chen,Jie‐Xin Wang,Dong Huang,Jun Liu,Jianxiang Shen,Dapeng Cao,Xiaofei Zeng,Jian‐Feng Chen
出处
期刊:Langmuir
[American Chemical Society]
日期:2024-06-20
卷期号:40 (26): 13688-13698
被引量:1
标识
DOI:10.1021/acs.langmuir.4c01435
摘要
The structure–property relationship of poly(vinyl chloride) (PVC)/CaCO3 nanocomposites is investigated by all-atom molecular dynamics (MD) simulations. MD simulation results indicate that the dispersity of nanofillers, interfacial bonding, and chain mobility are imperative factors to improve the mechanical performance of nanocomposites, especially toughness. The tensile behavior and dissipated work of the PVC/CaCO3 model demonstrate that 12 wt % CaCO3 modified with oleate anion and dodecylbenzenesulfonate can impart high toughness to PVC due to its good dispersion, favorable interface interaction, and weak migration of PVC chains. Under the guidance of MD simulation, we experimentally prepared a transparent PVC/CaCO3 nanocomposite with good mechanical properties by in situ polymerization of monodispersed CaCO3 in vinyl chloride monomers. Interestingly, experimental tests indicate that the optimum toughness of a nanocomposite (a 368% increase in the elongation at break and 204% improvement of the impact strength) can be indeed realized by adding 12 wt % CaCO3 modified with oleic acid and dodecylbenzenesulfonic acid, which is remarkably consistent with the MD simulation prediction. In short, this work provides a proof-of-concept of using MD simulation to guide the experimental synthesis of PVC/CaCO3 nanocomposites, which can be considered as an example to develop other functional nanocomposites
科研通智能强力驱动
Strongly Powered by AbleSci AI