亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Heterostructured MnSe/FeSe nanorods encapsulated by carbon with enhanced Na+ diffusion as anode materials for sodium-ion batteries

阳极 纳米棒 材料科学 化学工程 离子 异质结 碳纤维 扩散 纳米技术 电极 光电子学 化学 复合数 物理化学 物理 有机化学 工程类 冶金 复合材料 热力学
作者
Tao Liu,Lijun Xu,Xuejie Wang,Haoliang Lv,Bicheng Zhu,Jiaguo Yu,Liuyang Zhang
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:672: 43-52 被引量:10
标识
DOI:10.1016/j.jcis.2024.05.220
摘要

The natural abundance of sodium has fostered the development of sodium-ion batteries for large-scale energy storage. However, the low capacity of the anodes hinders their future application. Herein, carbon-encapsulated MnSe-FeSe nanorods (MnSe-FeSe@C) have been fabricated by the in-situ transformation from polydopamine-coated MnO(OH)-Fe2O3. The heterostructure constructed by MnSe and FeSe nanocrystals induces the formation of built-in electric fields, accelerating electron transfer and ion diffusion, thereby improving reaction kinetics. In addition, carbon enclosure can buffer the volumetric stress and enhance the electrical conductivity. These aspects cooperatively endow the anode with superior cycling stability and distinguished rate performance. Specifically, the discharge capacity of MnSe-FeSe@C reaches 414.3 mA h g−1 at 0.1 A g−1 and 388.8 mA h g−1 even at a high current density of 5.0 A g−1. In addition, it still retains a high reversible capacity of 449.2 mA h g−1 after 700 long cycles at 1.0 A g−1. Further, the ab initio calculation has been employed to authenticate the existence of the built-in electric field by Bader charge, indicating that 0.24 electrons in MnSe were transferred to FeSe. The in-situ XRD has been used to evaluate the phase transition during the charging/discharging process, revealing the sodium ion storage mechanism. The construction of heterostructure material paves a new way to design performance-enhanced anode materials for sodium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
86400完成签到,获得积分10
11秒前
17秒前
香蕉觅云应助zhangyimg采纳,获得10
21秒前
天天快乐应助Sahar采纳,获得10
22秒前
24秒前
26秒前
uu发布了新的文献求助10
31秒前
haokeyan发布了新的文献求助10
31秒前
35秒前
37秒前
haokeyan完成签到,获得积分10
39秒前
Sahar发布了新的文献求助10
41秒前
竹子完成签到,获得积分10
44秒前
无花果应助科研通管家采纳,获得10
52秒前
科研通AI5应助科研通管家采纳,获得10
52秒前
m(_._)m完成签到 ,获得积分0
54秒前
内向耷完成签到 ,获得积分20
58秒前
Sahar完成签到,获得积分10
1分钟前
1分钟前
1分钟前
sukii发布了新的文献求助30
1分钟前
1分钟前
zhangyimg发布了新的文献求助10
1分钟前
1分钟前
喵喵完成签到,获得积分10
1分钟前
1分钟前
sukii完成签到,获得积分20
1分钟前
SciGPT应助科研小白采纳,获得10
1分钟前
土豪的摩托完成签到 ,获得积分10
1分钟前
Alanni完成签到 ,获得积分10
1分钟前
SHD完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
长情黄蜂发布了新的文献求助10
2分钟前
2分钟前
longh完成签到,获得积分10
2分钟前
科研小白发布了新的文献求助10
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135489
关于积分的说明 9412388
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728452
科研通“疑难数据库(出版商)”最低求助积分说明 716832