扫描电镜
线粒体DNA
线粒体
线粒体融合
细胞生物学
生物
细胞器
生物物理学
线粒体内膜
荧光显微镜
线粒体分裂
荧光
遗传学
物理
受激发射
基因
光学
激光器
作者
Wei Ren,Xichuan Ge,Meiqi Li,Jing Sun,Shiyi Li,Shu Gao,Chunyan Shan,Baoxiang Gao,Peng Xi
标识
DOI:10.1038/s41377-024-01463-9
摘要
Abstract Mitochondria are crucial organelles closely associated with cellular metabolism and function. Mitochondrial DNA (mtDNA) encodes a variety of transcripts and proteins essential for cellular function. However, the interaction between the inner membrane (IM) and mtDNA remains elusive due to the limitations in spatiotemporal resolution offered by conventional microscopy and the absence of suitable in vivo probes specifically targeting the IM. Here, we have developed a novel fluorescence probe called HBmito Crimson, characterized by exceptional photostability, fluorogenicity within lipid membranes, and low saturation power. We successfully achieved over 500 frames of low-power stimulated emission depletion microscopy (STED) imaging to visualize the IM dynamics, with a spatial resolution of 40 nm. By utilizing dual-color imaging of the IM and mtDNA, it has been uncovered that mtDNA tends to habitat at mitochondrial tips or branch points, exhibiting an overall spatially uniform distribution. Notably, the dynamics of mitochondria are intricately associated with the positioning of mtDNA, and fusion consistently occurs in close proximity to mtDNA to minimize pressure during cristae remodeling. In healthy cells, >66% of the mitochondria are Class III (i.e., mitochondria >5 μm or with >12 cristae), while it dropped to <18% in ferroptosis. Mitochondrial dynamics, orchestrated by cristae remodeling, foster the even distribution of mtDNA. Conversely, in conditions of apoptosis and ferroptosis where the cristae structure is compromised, mtDNA distribution becomes irregular. These findings, achieved with unprecedented spatiotemporal resolution, reveal the intricate interplay between cristae and mtDNA and provide insights into the driving forces behind mtDNA distribution.
科研通智能强力驱动
Strongly Powered by AbleSci AI