Strategy to achieve both enhanced dielectric tunability and reduced dielectric loss in the barium zirconium titanate ceramics

材料科学 电介质 钛酸钡 陶瓷 介电损耗 复合材料 光电子学 冶金
作者
Wenfeng Liu,Fanyi Kong,Yan Liang,Dongsheng Ran,Yi Zhao,Shengtao Li
出处
期刊:Ceramics International [Elsevier]
标识
DOI:10.1016/j.ceramint.2024.05.354
摘要

Tunable dielectric materials, serving as key components in microwave electronic application, require both high dielectric tunability and low dielectric loss. However, the trade-off between dielectric tunability and dielectric loss restricts the improvement of the overall dielectric tunability properties. In the present study, we proposed an effective approach to benefit both high tunability and low dielectric loss, i.e., improving intrinsic dielectric response from the lattice polarization and restricting the extrinsic dielectric response from the domain motions at the same time. Experimentally different acceptor dopants were employed, including the introduction of K at the A-site and Mn, Fe and Co at the B-site. On one hand, the different acceptor dopants could adjust the Curie temperature and consequently resulting in the enhanced intrinsic dielectric response at room temperature. On the other hand, the employment of acceptor dopant could introduce the oxygen vacancies and form the acceptor-oxygen vacancy dipoles which may restrict the reorientation of microdomains, resulting in the decrease of extrinsic dielectric response. Herein, both enhanced tunability and reduced dielectric loss were achieved in acceptor doped BZT ceramics at ambient temperature (27°C). In particular, Fe doped BZT ceramics achieved both high dielectric tunability of 93.8% and low dielectric loss of 0.0038. Such performance is competitive with that of previous reported dielectric tunable materials. In addition, the dielectric tunability of Fe doped BZT ceramics maintained over 60% within the wide temperature range from -20°C to 60 °C.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
烟花应助尊敬乐蕊采纳,获得30
刚刚
学术蝗虫发布了新的文献求助10
1秒前
姜姜完成签到,获得积分10
1秒前
上官若男应助Kx采纳,获得10
2秒前
莫问发布了新的文献求助10
3秒前
科研通AI2S应助gigadrill采纳,获得10
4秒前
桐桐应助溜了溜了采纳,获得10
4秒前
科研通AI2S应助hahah采纳,获得10
4秒前
李sir完成签到 ,获得积分10
4秒前
5秒前
6秒前
6秒前
Zhoujian发布了新的文献求助10
7秒前
7秒前
今后应助luca采纳,获得10
7秒前
8秒前
wanci应助人文采纳,获得10
8秒前
10秒前
10秒前
hahah完成签到,获得积分10
12秒前
12秒前
泛泛之交发布了新的文献求助10
13秒前
spark810应助Twilight采纳,获得10
14秒前
yxyyyy完成签到 ,获得积分10
14秒前
少年发布了新的文献求助10
15秒前
Simple发布了新的文献求助20
16秒前
peng发布了新的文献求助10
16秒前
所所应助fanmo采纳,获得10
18秒前
18秒前
18秒前
19秒前
20秒前
丘比特应助想打就打007采纳,获得10
20秒前
酷波er应助dongjingran采纳,获得10
21秒前
丿淘丶Tao丨完成签到,获得积分10
21秒前
22秒前
一纸墨香完成签到,获得积分20
22秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124857
求助须知:如何正确求助?哪些是违规求助? 2775196
关于积分的说明 7725657
捐赠科研通 2430668
什么是DOI,文献DOI怎么找? 1291358
科研通“疑难数据库(出版商)”最低求助积分说明 622123
版权声明 600328