Strategy to achieve both enhanced dielectric tunability and reduced dielectric loss in the barium zirconium titanate ceramics

材料科学 电介质 钛酸钡 陶瓷 介电损耗 复合材料 光电子学 冶金
作者
Wenfeng Liu,Fanyi Kong,Yan Liang,Dongsheng Ran,Yi Zhao,Shengtao Li
出处
期刊:Ceramics International [Elsevier]
卷期号:50 (18): 31759-31766 被引量:4
标识
DOI:10.1016/j.ceramint.2024.05.354
摘要

Tunable dielectric materials, serving as key components in microwave electronic application, require both high dielectric tunability and low dielectric loss. However, the trade-off between dielectric tunability and dielectric loss restricts the improvement of the overall dielectric tunability properties. In the present study, we proposed an effective approach to benefit both high tunability and low dielectric loss, i.e., improving intrinsic dielectric response from the lattice polarization and restricting the extrinsic dielectric response from the domain motions at the same time. Experimentally different acceptor dopants were employed, including the introduction of K at the A-site and Mn, Fe and Co at the B-site. On one hand, the different acceptor dopants could adjust the Curie temperature and consequently resulting in the enhanced intrinsic dielectric response at room temperature. On the other hand, the employment of acceptor dopant could introduce the oxygen vacancies and form the acceptor-oxygen vacancy dipoles which may restrict the reorientation of microdomains, resulting in the decrease of extrinsic dielectric response. Herein, both enhanced tunability and reduced dielectric loss were achieved in acceptor doped BZT ceramics at ambient temperature (27°C). In particular, Fe doped BZT ceramics achieved both high dielectric tunability of 93.8% and low dielectric loss of 0.0038. Such performance is competitive with that of previous reported dielectric tunable materials. In addition, the dielectric tunability of Fe doped BZT ceramics maintained over 60% within the wide temperature range from -20°C to 60 °C.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乘风的法袍完成签到,获得积分10
刚刚
动人的梦之完成签到,获得积分10
1秒前
1秒前
1秒前
酷波er应助麻辣烫物采纳,获得10
2秒前
2秒前
gtxy完成签到 ,获得积分10
2秒前
二狗完成签到 ,获得积分10
4秒前
ding应助盆清采纳,获得10
4秒前
renovel发布了新的文献求助10
6秒前
6秒前
DTOU应助ZLX采纳,获得10
6秒前
6秒前
Bruce发布了新的文献求助10
6秒前
LYNB完成签到 ,获得积分10
7秒前
蓝天发布了新的文献求助10
8秒前
顾矜应助勤奋流沙采纳,获得10
8秒前
Hhbbb完成签到 ,获得积分20
8秒前
9秒前
10秒前
熊猫发布了新的文献求助20
12秒前
14秒前
15秒前
16秒前
点儿发布了新的文献求助10
17秒前
17秒前
麻辣烫物发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
23秒前
宇宙完成签到,获得积分20
24秒前
霍焱发布了新的文献求助10
24秒前
hu发布了新的文献求助10
24秒前
Yuan完成签到,获得积分10
25秒前
25秒前
inyh59完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770240
求助须知:如何正确求助?哪些是违规求助? 5583672
关于积分的说明 15423777
捐赠科研通 4903786
什么是DOI,文献DOI怎么找? 2638350
邀请新用户注册赠送积分活动 1586204
关于科研通互助平台的介绍 1541370