Snake swarm optimization‐based deep reinforcement learning for resource allocation in edge computing environment

强化学习 计算机科学 资源配置 人工智能 GSM演进的增强数据速率 群体行为 分布式计算 计算机网络
作者
S. Kaliraj,V. Sivakumar,N. Premkumar,S. Vatchala
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:36 (18)
标识
DOI:10.1002/cpe.8130
摘要

Summary Mobile edge computing has become popular in the past few years as a means of creating computing resources close to end‐user nodes at the network edge. Nodes—end users—demand work offloading to improve service utilization. Furthermore, when the number of users in mobile edge computing increases, the minimal resources deployed at the edge become a problem. Develop the idea of reinforcement learning using a metaheuristic technique intended to achieve effective resource allocation and resolve offloading issues to handle this issue. The ideal way to manage the implementation of mobile edge computing with a cognitive agent's help is to request compensation for all client necessities. To complete the infrastructure type for the Internet of Things (IoT), the operator information is combined with its distinctive methodology. Neural caching during task execution is provided by reinforcement learning based on snake swarm optimization (SSO). Neural caching during task execution is provided by reinforcement learning based on SSO. In the process of creating the cost mapping table and incentive factor‐based optimal resource allocation, this suggested method is applied to a contract with effective resource allocation among the end manipulators. Using performance metrics like delivery ratio, energy consumption, throughput, and delay, the suggested approach is put into practice and examined. It is also contrasted with traditional methods like Gray Wolf Optimization (GWO) ant colony optimization (ACO) and genetic algorithms (GA).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sun关闭了sun文献求助
1秒前
WHaha发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
Timing侠发布了新的文献求助10
2秒前
坦率的文龙完成签到,获得积分10
3秒前
快乐滑板发布了新的文献求助10
3秒前
3秒前
清爽绣连完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
情怀应助顾思凡采纳,获得10
5秒前
zaadasd发布了新的文献求助20
5秒前
玖玖完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
冬嘉完成签到,获得积分10
7秒前
Ava应助DADA采纳,获得10
7秒前
现代的访曼应助nandiaozhimu采纳,获得20
8秒前
8秒前
sakuraking完成签到,获得积分10
8秒前
123完成签到,获得积分10
8秒前
9秒前
9秒前
wangerer发布了新的文献求助10
9秒前
10秒前
qinqin发布了新的文献求助10
10秒前
10秒前
春天发布了新的文献求助10
11秒前
zhenya发布了新的文献求助20
11秒前
脑洞疼应助Lone采纳,获得10
11秒前
haoliu完成签到,获得积分10
11秒前
心灵美的石头完成签到,获得积分10
12秒前
想喝奶茶完成签到,获得积分10
12秒前
12秒前
13秒前
江屿发布了新的文献求助10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961675
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139238
捐赠科研通 3240579
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803326