Snake swarm optimization‐based deep reinforcement learning for resource allocation in edge computing environment

强化学习 计算机科学 资源配置 人工智能 GSM演进的增强数据速率 群体行为 分布式计算 计算机网络
作者
S. Kaliraj,V. Sivakumar,N. Premkumar,S. Vatchala
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:36 (18)
标识
DOI:10.1002/cpe.8130
摘要

Summary Mobile edge computing has become popular in the past few years as a means of creating computing resources close to end‐user nodes at the network edge. Nodes—end users—demand work offloading to improve service utilization. Furthermore, when the number of users in mobile edge computing increases, the minimal resources deployed at the edge become a problem. Develop the idea of reinforcement learning using a metaheuristic technique intended to achieve effective resource allocation and resolve offloading issues to handle this issue. The ideal way to manage the implementation of mobile edge computing with a cognitive agent's help is to request compensation for all client necessities. To complete the infrastructure type for the Internet of Things (IoT), the operator information is combined with its distinctive methodology. Neural caching during task execution is provided by reinforcement learning based on snake swarm optimization (SSO). Neural caching during task execution is provided by reinforcement learning based on SSO. In the process of creating the cost mapping table and incentive factor‐based optimal resource allocation, this suggested method is applied to a contract with effective resource allocation among the end manipulators. Using performance metrics like delivery ratio, energy consumption, throughput, and delay, the suggested approach is put into practice and examined. It is also contrasted with traditional methods like Gray Wolf Optimization (GWO) ant colony optimization (ACO) and genetic algorithms (GA).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢的觅云应助徐小赞采纳,获得30
4秒前
科研通AI2S应助小小旭呀采纳,获得10
5秒前
5秒前
魔幻的毛巾完成签到,获得积分10
7秒前
诚心凝蝶完成签到,获得积分10
9秒前
紧张的友灵完成签到,获得积分10
11秒前
天丽发布了新的文献求助10
11秒前
12秒前
钦点小黑完成签到 ,获得积分10
12秒前
今夜尼尼完成签到,获得积分20
13秒前
婷婷应助nyc采纳,获得10
14秒前
Jasper应助时尚的立诚采纳,获得10
14秒前
15秒前
思源应助诚心谷南采纳,获得10
17秒前
17秒前
Joy发布了新的文献求助10
17秒前
sqw发布了新的文献求助20
19秒前
出路完成签到,获得积分20
19秒前
20秒前
21秒前
23秒前
长春福报小子完成签到,获得积分10
23秒前
yujian完成签到,获得积分10
24秒前
25秒前
妍妍发布了新的文献求助10
25秒前
单薄咖啡豆完成签到 ,获得积分10
26秒前
30秒前
诚心谷南发布了新的文献求助10
31秒前
善学以致用应助妍妍采纳,获得10
33秒前
刻苦的kiwi完成签到,获得积分10
35秒前
情怀应助s_h采纳,获得10
35秒前
你好发布了新的文献求助10
38秒前
认真学习发布了新的文献求助10
39秒前
yujian关注了科研通微信公众号
40秒前
Estrella应助叁壹捌采纳,获得10
40秒前
天丽完成签到,获得积分10
41秒前
42秒前
玻璃杯发布了新的文献求助10
46秒前
nyc发布了新的文献求助30
47秒前
48秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164310
求助须知:如何正确求助?哪些是违规求助? 2815071
关于积分的说明 7907481
捐赠科研通 2474626
什么是DOI,文献DOI怎么找? 1317598
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228