材料科学
兴奋剂
催化作用
图层(电子)
电催化剂
电子转移
碳纤维
氧气
纳米颗粒
氧还原反应
氧还原
纳米技术
化学工程
电子传输链
光电子学
电极
复合材料
光化学
物理化学
电化学
有机化学
复合数
工程类
生物化学
化学
作者
Javier Quílez‐Bermejo,Ayoub Daouli,Sergio García‐Dalí,Yingdan Cui,Andrea Zitolo,Jimena Castro-Gutiérrez,Mélanie Emo,M.T. Izquierdo,William E. Mustain,Michaël Badawi,Alain Celzard,Vanessa Fierro
标识
DOI:10.1002/adfm.202403810
摘要
Abstract Encapsulating Fe 3 C in carbon layers has emerged as an innovative strategy for protecting Fe 3 C while preserving its high oxygen reduction activity. However, fundamental questions persist regarding the active sites of encapsulated Fe 3 C due to the restricted accessibility of oxygen molecules to the metal sites. Herein, the intrinsic electron transfer mechanisms of Fe 3 C nanoparticles encapsulated in N‐doped carbon materials are unveiled for oxygen reduction electrocatalysis. The precision‐structured C 1 N 1 material is used to synthesize N‐doped carbons with encapsulated Fe 3 C, significantly enhancing catalytic activity (E ONSET = 0.98 V) and achieving near‐100% operational stability. In anion‐exchange membrane fuel cells, an excellent peak power density of 830 mW cm −2 is reached at 60 °C. The experimental and computational results revealed that the presence of Fe 3 C cores dynamically triggers electron transfer to the outermost carbon layer. This phenomenon amplifies the oxygen reduction reaction performance at N sites, contributing significantly to the observed catalytic enhancement.
科研通智能强力驱动
Strongly Powered by AbleSci AI