Designing sulfonated polyimide-based fuel cell polymer electrolyte membranes using machine learning approaches

电导率 质子交换膜燃料电池 质子 电解质 随机森林 材料科学 决策树 计算机科学 聚合物 机器学习 生物系统 人工智能 工艺工程 化学 复合材料 物理 工程类 物理化学 生物 量子力学 生物化学 电极
作者
Tushita Rohilla,Narinder Singh,Narayanan C. Krishnan,Dhiraj K. Mahajan
出处
期刊:Computational Materials Science [Elsevier]
卷期号:219: 111974-111974 被引量:4
标识
DOI:10.1016/j.commatsci.2022.111974
摘要

Fuel cells are the efficient electrochemical energy conversion devices with wide-ranging applications. Polymer Electrolyte Membrane (PEM) is the primary component of a PEM fuel cell whose proton conductivity majorly determines the performance of the fuel cells. Due to the high cost and limited range of operating parameters, alternatives of perfluorinated ionomers based commercial PEMs are urgently required. Sulfonated polyimides (SPIs) based hydrocarbon PEMs, have exhibited better proton conductivity even at low hydration levels and high temperatures, making them possible candidates for replacing commercial PEMs. However, finding alternative SPI PEMs is a critical polymer discovery problem that requires enormous experimental efforts where Machine learning (ML) approaches can help to reduce such efforts. To this end, both supervised and unsupervised ML approaches are developed to predict the proton conductivity of SPIs. A hybrid dataset of 81 unique SPIs is generated that consists of collected chemical structure–properties data from reported literature and calculated quantitative structure–property and semi-empirical quantum chemical descriptors. Using simple and interpretable Decision Trees, rules that lead to a low or high class of proton conductivity labels with high accuracy are identified. The trained decision tree model can accurately predict the proton conductivity class labels with a prediction accuracy of 88% and a kappa statistic of 0.77. The random forest regression (RFR) model, on the other hand, identified additional set of features that can predict proton conductivity with reasonable error. Thus, high information-gain features have been identified and their correlation with the proton conductivity class labels have been explored. These findings are key to designing novel SPI PEMs while correlating proton transport at the ionomer level with factors such as the morphology of the microstructure and inter-chain interactions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小思发布了新的文献求助10
1秒前
1秒前
ff发布了新的文献求助10
2秒前
reform01完成签到,获得积分20
2秒前
量子星尘发布了新的文献求助10
3秒前
苗觉觉完成签到,获得积分10
3秒前
完美世界应助周小鱼采纳,获得10
3秒前
3秒前
石头发布了新的文献求助10
4秒前
宋博文完成签到,获得积分10
4秒前
5秒前
5秒前
缝纫工发布了新的文献求助10
5秒前
汉堡包应助火星上惜蕊采纳,获得10
5秒前
sxp1031完成签到,获得积分10
5秒前
烟花应助reform01采纳,获得10
5秒前
huan发布了新的文献求助10
6秒前
英吉利25发布了新的文献求助10
6秒前
追寻冬日完成签到,获得积分10
6秒前
吕布完成签到,获得积分10
7秒前
哈哈哈发布了新的文献求助10
7秒前
mofeik完成签到,获得积分10
7秒前
哈哈哈完成签到,获得积分10
7秒前
liminliminlimin完成签到,获得积分10
7秒前
8秒前
郑zz完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
sanch发布了新的文献求助10
9秒前
可爱的函函应助hahhhhhh2采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751577
求助须知:如何正确求助?哪些是违规求助? 5469081
关于积分的说明 15370428
捐赠科研通 4890701
什么是DOI,文献DOI怎么找? 2629836
邀请新用户注册赠送积分活动 1578067
关于科研通互助平台的介绍 1534214