Designing sulfonated polyimide-based fuel cell polymer electrolyte membranes using machine learning approaches

电导率 质子交换膜燃料电池 质子 电解质 随机森林 材料科学 决策树 计算机科学 聚合物 机器学习 生物系统 人工智能 工艺工程 化学 复合材料 物理 工程类 物理化学 生物 量子力学 生物化学 电极
作者
Tushita Rohilla,Narinder Singh,Narayanan C. Krishnan,Dhiraj K. Mahajan
出处
期刊:Computational Materials Science [Elsevier]
卷期号:219: 111974-111974 被引量:4
标识
DOI:10.1016/j.commatsci.2022.111974
摘要

Fuel cells are the efficient electrochemical energy conversion devices with wide-ranging applications. Polymer Electrolyte Membrane (PEM) is the primary component of a PEM fuel cell whose proton conductivity majorly determines the performance of the fuel cells. Due to the high cost and limited range of operating parameters, alternatives of perfluorinated ionomers based commercial PEMs are urgently required. Sulfonated polyimides (SPIs) based hydrocarbon PEMs, have exhibited better proton conductivity even at low hydration levels and high temperatures, making them possible candidates for replacing commercial PEMs. However, finding alternative SPI PEMs is a critical polymer discovery problem that requires enormous experimental efforts where Machine learning (ML) approaches can help to reduce such efforts. To this end, both supervised and unsupervised ML approaches are developed to predict the proton conductivity of SPIs. A hybrid dataset of 81 unique SPIs is generated that consists of collected chemical structure–properties data from reported literature and calculated quantitative structure–property and semi-empirical quantum chemical descriptors. Using simple and interpretable Decision Trees, rules that lead to a low or high class of proton conductivity labels with high accuracy are identified. The trained decision tree model can accurately predict the proton conductivity class labels with a prediction accuracy of 88% and a kappa statistic of 0.77. The random forest regression (RFR) model, on the other hand, identified additional set of features that can predict proton conductivity with reasonable error. Thus, high information-gain features have been identified and their correlation with the proton conductivity class labels have been explored. These findings are key to designing novel SPI PEMs while correlating proton transport at the ionomer level with factors such as the morphology of the microstructure and inter-chain interactions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
柯一一完成签到,获得积分0
1秒前
传奇3应助不散的和弦采纳,获得10
2秒前
冰河完成签到 ,获得积分10
2秒前
会飞完成签到,获得积分10
3秒前
chens627完成签到,获得积分10
3秒前
坚强的不愁完成签到,获得积分10
3秒前
jiujiuji发布了新的文献求助10
4秒前
4秒前
小余同学完成签到,获得积分10
5秒前
乐乐应助GGbond采纳,获得10
5秒前
万能图书馆应助GGbond采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
Ye完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
Tina完成签到,获得积分10
10秒前
领导范儿应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
ccmxigua应助科研通管家采纳,获得10
11秒前
欢呼乘风应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得30
11秒前
浮游应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
CDQ完成签到,获得积分10
13秒前
13秒前
14秒前
所所应助halo采纳,获得10
14秒前
隐形曼青应助优TT采纳,获得10
14秒前
14秒前
QWSS发布了新的文献求助10
15秒前
Tina发布了新的文献求助10
15秒前
江小刀发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646495
求助须知:如何正确求助?哪些是违规求助? 4771505
关于积分的说明 15035374
捐赠科研通 4805305
什么是DOI,文献DOI怎么找? 2569593
邀请新用户注册赠送积分活动 1526581
关于科研通互助平台的介绍 1485858