Designing sulfonated polyimide-based fuel cell polymer electrolyte membranes using machine learning approaches

电导率 质子交换膜燃料电池 质子 电解质 随机森林 材料科学 决策树 计算机科学 聚合物 机器学习 生物系统 人工智能 工艺工程 化学 复合材料 物理 工程类 物理化学 生物 量子力学 生物化学 电极
作者
Tushita Rohilla,Narinder Singh,Narayanan C. Krishnan,Dhiraj K. Mahajan
出处
期刊:Computational Materials Science [Elsevier]
卷期号:219: 111974-111974 被引量:4
标识
DOI:10.1016/j.commatsci.2022.111974
摘要

Fuel cells are the efficient electrochemical energy conversion devices with wide-ranging applications. Polymer Electrolyte Membrane (PEM) is the primary component of a PEM fuel cell whose proton conductivity majorly determines the performance of the fuel cells. Due to the high cost and limited range of operating parameters, alternatives of perfluorinated ionomers based commercial PEMs are urgently required. Sulfonated polyimides (SPIs) based hydrocarbon PEMs, have exhibited better proton conductivity even at low hydration levels and high temperatures, making them possible candidates for replacing commercial PEMs. However, finding alternative SPI PEMs is a critical polymer discovery problem that requires enormous experimental efforts where Machine learning (ML) approaches can help to reduce such efforts. To this end, both supervised and unsupervised ML approaches are developed to predict the proton conductivity of SPIs. A hybrid dataset of 81 unique SPIs is generated that consists of collected chemical structure–properties data from reported literature and calculated quantitative structure–property and semi-empirical quantum chemical descriptors. Using simple and interpretable Decision Trees, rules that lead to a low or high class of proton conductivity labels with high accuracy are identified. The trained decision tree model can accurately predict the proton conductivity class labels with a prediction accuracy of 88% and a kappa statistic of 0.77. The random forest regression (RFR) model, on the other hand, identified additional set of features that can predict proton conductivity with reasonable error. Thus, high information-gain features have been identified and their correlation with the proton conductivity class labels have been explored. These findings are key to designing novel SPI PEMs while correlating proton transport at the ionomer level with factors such as the morphology of the microstructure and inter-chain interactions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助杏仁饼干采纳,获得10
1秒前
英俊的铭应助杏仁饼干采纳,获得10
1秒前
子车茗应助LSS采纳,获得20
1秒前
文艺的雨完成签到,获得积分10
1秒前
豪士赋完成签到,获得积分10
2秒前
FashionBoy应助7788采纳,获得10
2秒前
Jasper应助阳光采纳,获得10
3秒前
自由小蚂蚁完成签到,获得积分10
3秒前
mihriban发布了新的文献求助10
3秒前
浅笑发布了新的文献求助10
3秒前
3秒前
大樗发布了新的文献求助10
3秒前
HJJHJH发布了新的文献求助10
4秒前
aaqaq123321发布了新的文献求助10
4秒前
4秒前
丫丫发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
Milktea123完成签到,获得积分10
6秒前
6秒前
聪慧的雪糕完成签到,获得积分10
7秒前
耶耶完成签到 ,获得积分10
7秒前
7秒前
自然发布了新的文献求助10
7秒前
pluto应助刘鑫采纳,获得10
7秒前
轻松笙发布了新的文献求助10
8秒前
青柠完成签到,获得积分10
8秒前
R先生发布了新的文献求助10
8秒前
wly完成签到,获得积分10
8秒前
半城烟火发布了新的文献求助10
9秒前
好好应助积极的初瑶采纳,获得10
9秒前
9秒前
SciGPT应助浅笑采纳,获得10
9秒前
manjusaka发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719182
求助须知:如何正确求助?哪些是违规求助? 5255402
关于积分的说明 15287996
捐赠科研通 4869073
什么是DOI,文献DOI怎么找? 2614641
邀请新用户注册赠送积分活动 1564561
关于科研通互助平台的介绍 1521851