Designing sulfonated polyimide-based fuel cell polymer electrolyte membranes using machine learning approaches

电导率 质子交换膜燃料电池 质子 电解质 随机森林 材料科学 决策树 计算机科学 聚合物 机器学习 生物系统 人工智能 工艺工程 化学 复合材料 物理 工程类 生物化学 物理化学 电极 量子力学 生物
作者
Tushita Rohilla,Narinder Singh,Narayanan C. Krishnan,Dhiraj K. Mahajan
出处
期刊:Computational Materials Science [Elsevier]
卷期号:219: 111974-111974 被引量:4
标识
DOI:10.1016/j.commatsci.2022.111974
摘要

Fuel cells are the efficient electrochemical energy conversion devices with wide-ranging applications. Polymer Electrolyte Membrane (PEM) is the primary component of a PEM fuel cell whose proton conductivity majorly determines the performance of the fuel cells. Due to the high cost and limited range of operating parameters, alternatives of perfluorinated ionomers based commercial PEMs are urgently required. Sulfonated polyimides (SPIs) based hydrocarbon PEMs, have exhibited better proton conductivity even at low hydration levels and high temperatures, making them possible candidates for replacing commercial PEMs. However, finding alternative SPI PEMs is a critical polymer discovery problem that requires enormous experimental efforts where Machine learning (ML) approaches can help to reduce such efforts. To this end, both supervised and unsupervised ML approaches are developed to predict the proton conductivity of SPIs. A hybrid dataset of 81 unique SPIs is generated that consists of collected chemical structure–properties data from reported literature and calculated quantitative structure–property and semi-empirical quantum chemical descriptors. Using simple and interpretable Decision Trees, rules that lead to a low or high class of proton conductivity labels with high accuracy are identified. The trained decision tree model can accurately predict the proton conductivity class labels with a prediction accuracy of 88% and a kappa statistic of 0.77. The random forest regression (RFR) model, on the other hand, identified additional set of features that can predict proton conductivity with reasonable error. Thus, high information-gain features have been identified and their correlation with the proton conductivity class labels have been explored. These findings are key to designing novel SPI PEMs while correlating proton transport at the ionomer level with factors such as the morphology of the microstructure and inter-chain interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yufanhui应助RedPanda采纳,获得10
刚刚
爱笑凤凰完成签到,获得积分10
刚刚
汉堡包应助顾志成采纳,获得10
刚刚
内向的冰安完成签到,获得积分10
1秒前
ding应助宁静致远采纳,获得10
1秒前
huhu完成签到,获得积分10
1秒前
qiqi完成签到,获得积分10
1秒前
陵亚未完成签到,获得积分10
1秒前
大个应助相忘江湖的小余采纳,获得10
3秒前
顺心凡灵完成签到,获得积分10
3秒前
3秒前
littleJ完成签到,获得积分10
3秒前
香蕉秋寒完成签到,获得积分20
5秒前
5秒前
开朗冬萱完成签到 ,获得积分10
5秒前
简柠完成签到,获得积分10
5秒前
丫丫完成签到,获得积分10
6秒前
6秒前
牛牛完成签到,获得积分10
7秒前
我爱科研完成签到,获得积分10
7秒前
7秒前
小二郎应助陵亚未采纳,获得10
7秒前
7秒前
大方的诗柳关注了科研通微信公众号
8秒前
灵巧的孤容完成签到,获得积分10
8秒前
winsgao完成签到,获得积分10
9秒前
竹林听雨zxs完成签到 ,获得积分10
9秒前
怡然问晴完成签到,获得积分10
10秒前
天天快乐应助陶醉采纳,获得10
10秒前
xiaowang完成签到,获得积分10
11秒前
Sean发布了新的文献求助10
11秒前
温暖的问候完成签到,获得积分10
11秒前
12秒前
Riggle G完成签到,获得积分10
12秒前
qqcom完成签到,获得积分20
12秒前
13秒前
Willow完成签到,获得积分10
13秒前
leon发布了新的文献求助10
13秒前
科研通AI2S应助跳跃保温杯采纳,获得10
14秒前
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311526
求助须知:如何正确求助?哪些是违规求助? 2944297
关于积分的说明 8518278
捐赠科研通 2619707
什么是DOI,文献DOI怎么找? 1432509
科研通“疑难数据库(出版商)”最低求助积分说明 664684
邀请新用户注册赠送积分活动 649903