Designing sulfonated polyimide-based fuel cell polymer electrolyte membranes using machine learning approaches

电导率 质子交换膜燃料电池 质子 电解质 随机森林 材料科学 决策树 计算机科学 聚合物 机器学习 生物系统 人工智能 工艺工程 化学 复合材料 物理 工程类 生物化学 物理化学 电极 量子力学 生物
作者
Tushita Rohilla,Narinder Singh,Narayanan C. Krishnan,Dhiraj K. Mahajan
出处
期刊:Computational Materials Science [Elsevier BV]
卷期号:219: 111974-111974 被引量:4
标识
DOI:10.1016/j.commatsci.2022.111974
摘要

Fuel cells are the efficient electrochemical energy conversion devices with wide-ranging applications. Polymer Electrolyte Membrane (PEM) is the primary component of a PEM fuel cell whose proton conductivity majorly determines the performance of the fuel cells. Due to the high cost and limited range of operating parameters, alternatives of perfluorinated ionomers based commercial PEMs are urgently required. Sulfonated polyimides (SPIs) based hydrocarbon PEMs, have exhibited better proton conductivity even at low hydration levels and high temperatures, making them possible candidates for replacing commercial PEMs. However, finding alternative SPI PEMs is a critical polymer discovery problem that requires enormous experimental efforts where Machine learning (ML) approaches can help to reduce such efforts. To this end, both supervised and unsupervised ML approaches are developed to predict the proton conductivity of SPIs. A hybrid dataset of 81 unique SPIs is generated that consists of collected chemical structure–properties data from reported literature and calculated quantitative structure–property and semi-empirical quantum chemical descriptors. Using simple and interpretable Decision Trees, rules that lead to a low or high class of proton conductivity labels with high accuracy are identified. The trained decision tree model can accurately predict the proton conductivity class labels with a prediction accuracy of 88% and a kappa statistic of 0.77. The random forest regression (RFR) model, on the other hand, identified additional set of features that can predict proton conductivity with reasonable error. Thus, high information-gain features have been identified and their correlation with the proton conductivity class labels have been explored. These findings are key to designing novel SPI PEMs while correlating proton transport at the ionomer level with factors such as the morphology of the microstructure and inter-chain interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高滢完成签到,获得积分10
刚刚
佳佳发布了新的文献求助10
1秒前
hiu完成签到,获得积分10
1秒前
2秒前
3秒前
冷傲帅哥完成签到 ,获得积分10
3秒前
清秀寄风完成签到,获得积分10
3秒前
感动水杯发布了新的文献求助10
3秒前
踏实天亦完成签到,获得积分10
4秒前
4秒前
张张完成签到,获得积分20
4秒前
Owen应助小鹅采纳,获得10
5秒前
5秒前
6秒前
7秒前
希望天下0贩的0应助童童采纳,获得10
8秒前
科研通AI6应助北雁采纳,获得10
8秒前
科研通AI6应助北雁采纳,获得10
8秒前
好蓝发布了新的文献求助10
8秒前
科研通AI6应助北雁采纳,获得10
8秒前
科研通AI6应助北雁采纳,获得10
8秒前
se完成签到,获得积分20
9秒前
10秒前
热情盼柳完成签到,获得积分10
11秒前
una发布了新的文献求助10
11秒前
悦耳映真完成签到,获得积分10
13秒前
Andrewlabeth完成签到,获得积分10
13秒前
DAMO完成签到,获得积分10
15秒前
读者发布了新的文献求助10
15秒前
jbsb发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
万能图书馆应助小鹅采纳,获得10
17秒前
冷傲帅哥发布了新的文献求助20
19秒前
小二郎应助yanchen219采纳,获得10
19秒前
Promise完成签到,获得积分10
20秒前
21秒前
qwe发布了新的文献求助10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263289
求助须知:如何正确求助?哪些是违规求助? 4423914
关于积分的说明 13771219
捐赠科研通 4298936
什么是DOI,文献DOI怎么找? 2358826
邀请新用户注册赠送积分活动 1355088
关于科研通互助平台的介绍 1316312