Designing sulfonated polyimide-based fuel cell polymer electrolyte membranes using machine learning approaches

电导率 质子交换膜燃料电池 质子 电解质 随机森林 材料科学 决策树 计算机科学 聚合物 机器学习 生物系统 人工智能 工艺工程 化学 复合材料 物理 工程类 生物化学 物理化学 电极 量子力学 生物
作者
Tushita Rohilla,Narinder Singh,Narayanan C. Krishnan,Dhiraj K. Mahajan
出处
期刊:Computational Materials Science [Elsevier]
卷期号:219: 111974-111974 被引量:4
标识
DOI:10.1016/j.commatsci.2022.111974
摘要

Fuel cells are the efficient electrochemical energy conversion devices with wide-ranging applications. Polymer Electrolyte Membrane (PEM) is the primary component of a PEM fuel cell whose proton conductivity majorly determines the performance of the fuel cells. Due to the high cost and limited range of operating parameters, alternatives of perfluorinated ionomers based commercial PEMs are urgently required. Sulfonated polyimides (SPIs) based hydrocarbon PEMs, have exhibited better proton conductivity even at low hydration levels and high temperatures, making them possible candidates for replacing commercial PEMs. However, finding alternative SPI PEMs is a critical polymer discovery problem that requires enormous experimental efforts where Machine learning (ML) approaches can help to reduce such efforts. To this end, both supervised and unsupervised ML approaches are developed to predict the proton conductivity of SPIs. A hybrid dataset of 81 unique SPIs is generated that consists of collected chemical structure–properties data from reported literature and calculated quantitative structure–property and semi-empirical quantum chemical descriptors. Using simple and interpretable Decision Trees, rules that lead to a low or high class of proton conductivity labels with high accuracy are identified. The trained decision tree model can accurately predict the proton conductivity class labels with a prediction accuracy of 88% and a kappa statistic of 0.77. The random forest regression (RFR) model, on the other hand, identified additional set of features that can predict proton conductivity with reasonable error. Thus, high information-gain features have been identified and their correlation with the proton conductivity class labels have been explored. These findings are key to designing novel SPI PEMs while correlating proton transport at the ionomer level with factors such as the morphology of the microstructure and inter-chain interactions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科目三应助啊实打实的采纳,获得10
刚刚
hetao发布了新的文献求助10
刚刚
FashionBoy应助NXK采纳,获得10
刚刚
刚刚
点点完成签到,获得积分20
刚刚
稳重惜灵发布了新的文献求助10
1秒前
科研通AI6应助递年采纳,获得10
1秒前
Lxx发布了新的文献求助10
1秒前
He完成签到,获得积分10
2秒前
2秒前
小铃铛完成签到,获得积分10
2秒前
佳思思完成签到,获得积分10
2秒前
虚拟的小珍完成签到,获得积分10
3秒前
mmm发布了新的文献求助10
3秒前
3秒前
酷波er应助无心的复天采纳,获得10
3秒前
3秒前
所所应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
点点发布了新的文献求助10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
zik应助科研通管家采纳,获得10
4秒前
zhonglv7应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
starts发布了新的文献求助10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
4秒前
Mic应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
Hilda007应助科研通管家采纳,获得10
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
wanci应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
5秒前
guozizi应助科研通管家采纳,获得100
5秒前
watgos应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
dew应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585371
求助须知:如何正确求助?哪些是违规求助? 4669245
关于积分的说明 14775627
捐赠科研通 4617988
什么是DOI,文献DOI怎么找? 2530541
邀请新用户注册赠送积分活动 1499200
关于科研通互助平台的介绍 1467671