Designing sulfonated polyimide-based fuel cell polymer electrolyte membranes using machine learning approaches

电导率 质子交换膜燃料电池 质子 电解质 随机森林 材料科学 决策树 计算机科学 聚合物 机器学习 生物系统 人工智能 工艺工程 化学 复合材料 物理 工程类 物理化学 生物 量子力学 生物化学 电极
作者
Tushita Rohilla,Narinder Singh,Narayanan C. Krishnan,Dhiraj K. Mahajan
出处
期刊:Computational Materials Science [Elsevier BV]
卷期号:219: 111974-111974 被引量:4
标识
DOI:10.1016/j.commatsci.2022.111974
摘要

Fuel cells are the efficient electrochemical energy conversion devices with wide-ranging applications. Polymer Electrolyte Membrane (PEM) is the primary component of a PEM fuel cell whose proton conductivity majorly determines the performance of the fuel cells. Due to the high cost and limited range of operating parameters, alternatives of perfluorinated ionomers based commercial PEMs are urgently required. Sulfonated polyimides (SPIs) based hydrocarbon PEMs, have exhibited better proton conductivity even at low hydration levels and high temperatures, making them possible candidates for replacing commercial PEMs. However, finding alternative SPI PEMs is a critical polymer discovery problem that requires enormous experimental efforts where Machine learning (ML) approaches can help to reduce such efforts. To this end, both supervised and unsupervised ML approaches are developed to predict the proton conductivity of SPIs. A hybrid dataset of 81 unique SPIs is generated that consists of collected chemical structure–properties data from reported literature and calculated quantitative structure–property and semi-empirical quantum chemical descriptors. Using simple and interpretable Decision Trees, rules that lead to a low or high class of proton conductivity labels with high accuracy are identified. The trained decision tree model can accurately predict the proton conductivity class labels with a prediction accuracy of 88% and a kappa statistic of 0.77. The random forest regression (RFR) model, on the other hand, identified additional set of features that can predict proton conductivity with reasonable error. Thus, high information-gain features have been identified and their correlation with the proton conductivity class labels have been explored. These findings are key to designing novel SPI PEMs while correlating proton transport at the ionomer level with factors such as the morphology of the microstructure and inter-chain interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SICHEN发布了新的文献求助10
1秒前
大模型应助程公子采纳,获得10
2秒前
zhao完成签到,获得积分10
2秒前
旺仔同学发布了新的文献求助10
3秒前
RX信完成签到,获得积分10
4秒前
mumufan完成签到,获得积分10
4秒前
无花果应助晴云采纳,获得10
4秒前
啊标完成签到,获得积分10
4秒前
耕牛热完成签到,获得积分10
4秒前
bsn完成签到 ,获得积分10
5秒前
Akim应助乌拉拉采纳,获得10
6秒前
夏傥完成签到,获得积分10
7秒前
7秒前
彭博完成签到 ,获得积分10
8秒前
SICHEN完成签到,获得积分10
8秒前
韩_完成签到,获得积分10
9秒前
nnnnn完成签到 ,获得积分10
10秒前
鉨汏闫完成签到,获得积分10
10秒前
10秒前
mahliya完成签到,获得积分10
11秒前
耕牛热发布了新的文献求助10
11秒前
天天快乐应助zzz采纳,获得10
12秒前
整齐的白凡完成签到,获得积分10
12秒前
坐雨赏花完成签到 ,获得积分10
12秒前
查理fofo完成签到,获得积分10
14秒前
Shandongdaxiu完成签到 ,获得积分10
16秒前
丘比特应助旺仔同学采纳,获得10
16秒前
科研通AI2S应助旺仔同学采纳,获得10
16秒前
Jasper应助旺仔同学采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
小二郎应助坚强莺采纳,获得10
16秒前
17秒前
火星上的糖豆完成签到,获得积分10
17秒前
时尚战斗机应助sl采纳,获得10
17秒前
18秒前
zz完成签到,获得积分10
18秒前
非凡梦完成签到,获得积分10
18秒前
晴云发布了新的文献求助10
20秒前
dddd完成签到 ,获得积分10
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029