Ultrasound-triggered piezocatalytic composite hydrogels for promoting bacterial-infected wound healing

材料科学 伤口愈合 自愈水凝胶 透明质酸 甲基丙烯酰胺 生物医学工程 生物粘附 活性氧 盐酸四环素 纳米技术 丙烯酰胺 化学 药物输送 聚合物 高分子化学 复合材料 外科 抗生素 医学 解剖 生物化学 四环素 共聚物
作者
Dun Liu,Lei Li,Benlong Shi,Bo Shi,Ming‐Ding Li,Yong Qiu,Di Zhao,Qun‐Dong Shen,Zezhang Zhu
出处
期刊:Bioactive Materials [Elsevier]
卷期号:24: 96-111 被引量:59
标识
DOI:10.1016/j.bioactmat.2022.11.023
摘要

Wound healing has become one of the basic issues faced by the medical community because of the susceptibility of skin wounds to bacterial infection. As such, it is highly desired to design a nanocomposite hydrogel with excellent antibacterial activity to achieve high wound closure effectiveness. Here, based on ultrasound-triggered piezocatalytic therapy, a multifunctional hydrogel is designed to promote bacteria-infected wound healing. Under ultrasonic vibration, the surface of barium titanate (BaTiO3, BT) nanoparticles embedded in the hydrogel rapidly generate reactive oxygen species (ROS) owing to the established strong built-in electric field, endowing the hydrogel with superior antibacterial efficacy. This modality shows intriguing advantages over conventional photodynamic therapy, such as prominent soft tissue penetration ability and the avoidance of serious skin phototoxicity after systemic administration of photosensitizers. Moreover, the hydrogel based on N-[tris(hydroxymethyl)methyl]acrylamide (THM), N-(3-aminopropyl)methacrylamide hydrochloride (APMH) and oxidized hyaluronic acid (OHA) exhibits outstanding self-healing and bioadhesive properties able to accelerate full-thickness skin wound healing. Notably, compared with the widely reported mussel-inspired adhesive hydrogels, OHA/THM-APMH hydrogel due to the multiple hydrogen bonds from unique tri-hydroxyl structure overcomes the shortage that catechol groups are easily oxidized, giving it long-term and repeatable adhesion performance. Importantly, this hybrid hydrogel confines BT nanoparticles to wound area and locally induced piezoelectric catalysis under ultrasound to eradicate bacteria, markedly improving the therapeutic biosafety and exhibits great potential for harmless treatment of bacteria-infected tissues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
维尼发布了新的文献求助10
刚刚
Lowman完成签到,获得积分10
1秒前
wanci应助houchengru采纳,获得50
1秒前
苏卿应助迅速的鹤采纳,获得10
2秒前
kevindm完成签到,获得积分10
2秒前
mjl完成签到,获得积分20
2秒前
JM完成签到,获得积分10
3秒前
老实黄蜂应助Agoni采纳,获得10
4秒前
4秒前
科研通AI2S应助闪闪的山槐采纳,获得10
6秒前
努力发一区完成签到 ,获得积分10
6秒前
充电宝应助小于采纳,获得10
7秒前
饱满的海秋完成签到,获得积分10
7秒前
一丢丢完成签到,获得积分10
7秒前
失眠的煎饼完成签到,获得积分20
7秒前
青耕完成签到 ,获得积分10
8秒前
orixero应助yangxin614采纳,获得10
8秒前
医痞子发布了新的文献求助10
9秒前
慕青应助小酒窝采纳,获得10
9秒前
科研通AI2S应助小鱼采纳,获得10
11秒前
11秒前
11秒前
科研完成签到,获得积分10
12秒前
丘比特应助勇往直前采纳,获得10
12秒前
科研通AI2S应助Agoni采纳,获得10
12秒前
华仔应助ddffgz采纳,获得10
13秒前
受伤凌蝶完成签到,获得积分10
14秒前
Maneuvers完成签到,获得积分10
14秒前
15秒前
15秒前
JamesPei应助达达利亚采纳,获得10
17秒前
17秒前
66发布了新的文献求助10
18秒前
文献文献文献完成签到,获得积分10
19秒前
20秒前
李伟发布了新的文献求助10
21秒前
优秀的盼夏完成签到,获得积分10
21秒前
21秒前
sherry完成签到,获得积分10
22秒前
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156020
求助须知:如何正确求助?哪些是违规求助? 2807409
关于积分的说明 7872961
捐赠科研通 2465760
什么是DOI,文献DOI怎么找? 1312375
科研通“疑难数据库(出版商)”最低求助积分说明 630083
版权声明 601905