亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PVDet: Towards pedestrian and vehicle detection on gigapixel-level images

计算机科学 人工智能 计算机视觉 目标检测 棱锥(几何) 行人 骨干网 行人检测 残余物 过程(计算) 特征(语言学) 模式识别(心理学) 电信 算法 物理 哲学 工程类 光学 操作系统 语言学 运输工程
作者
Wanghao Mo,Wendong Zhang,Hongyang Wei,Ruyi Cao,Yan Ke,Yiwen Luo
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:118: 105705-105705 被引量:5
标识
DOI:10.1016/j.engappai.2022.105705
摘要

Recently, gigapixel photography has been developed considerably and gradually put into remote sensing, video surveillance, etc. Gigapixel images have a visible field of view area at the square-kilometer level (containing thousands of targets) and up to 100 times the scale variation. Among them, the differences in target pose, scale, and occlusion are huge, and most existing target detection algorithms cannot directly process them. To solve these problems, we propose a new multi-target pedestrian and vehicle detector PVDet (Towards Pedestrian and Vehicle Detection on Gigapixel-level images) for gigapixel-level images. First, the DPRNet (Deformable deeP Residual Network) is designed as the backbone network to enhance the effective perceptual field and improve the feature representation of pose varying and occluded targets. Then, the PAFPN (Path Aggregation Feature Pyramid Network) is adopted to process the multi-scale features extracted by the backbone, boosting the multi-scale target modeling capability and the localization of small targets. Finally, the DyHead module is introduced to enhance the detection head’s scale, spatial and task awareness, further optimizing pedestrian and vehicle classification and localization. Compared with other State-of-the-Art methods on the PANDA dataset, the experimental results show that the proposed method dramatically improves AP of pedestrian and vehicle detection in gigapixel-level images by 10.4 AP over baseline, which is better than the existing target detection algorithms. We also conducted experiments on the PASCAL VOC 2012 dataset to further demonstrate the generalization capability and effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黎明发布了新的文献求助10
1秒前
研友_VZG7GZ应助怦然心动采纳,获得10
2秒前
领导范儿应助王老裂采纳,获得80
3秒前
5秒前
brwen完成签到,获得积分10
8秒前
dax大雄完成签到 ,获得积分10
12秒前
15秒前
17秒前
18秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得30
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
田様应助科研通管家采纳,获得10
19秒前
ding应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
Hello应助科研通管家采纳,获得10
19秒前
ZZZ完成签到,获得积分10
22秒前
羊羊羊发布了新的文献求助10
22秒前
歪歪吸发布了新的文献求助10
22秒前
23秒前
xiaokun发布了新的文献求助10
23秒前
123发布了新的文献求助10
23秒前
王老裂发布了新的文献求助80
28秒前
歪歪吸完成签到,获得积分10
29秒前
北一君完成签到,获得积分10
29秒前
何靖馥琳完成签到,获得积分10
34秒前
丘比特应助库里强采纳,获得10
36秒前
LJL完成签到 ,获得积分10
40秒前
yong完成签到 ,获得积分10
50秒前
55秒前
852应助赫贞采纳,获得10
1分钟前
1分钟前
MRu发布了新的文献求助10
1分钟前
1分钟前
Dr_Zhan完成签到,获得积分10
1分钟前
1分钟前
ayato发布了新的文献求助10
1分钟前
1分钟前
1717发布了新的文献求助30
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5185944
求助须知:如何正确求助?哪些是违规求助? 4371293
关于积分的说明 13612012
捐赠科研通 4223623
什么是DOI,文献DOI怎么找? 2316534
邀请新用户注册赠送积分活动 1315159
关于科研通互助平台的介绍 1264147