PVDet: Towards pedestrian and vehicle detection on gigapixel-level images

计算机科学 人工智能 计算机视觉 目标检测 棱锥(几何) 行人 骨干网 行人检测 残余物 过程(计算) 特征(语言学) 模式识别(心理学) 电信 算法 物理 哲学 工程类 光学 操作系统 语言学 运输工程
作者
Wanghao Mo,Wendong Zhang,Hongyang Wei,Ruyi Cao,Yan Ke,Yiwen Luo
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:118: 105705-105705 被引量:5
标识
DOI:10.1016/j.engappai.2022.105705
摘要

Recently, gigapixel photography has been developed considerably and gradually put into remote sensing, video surveillance, etc. Gigapixel images have a visible field of view area at the square-kilometer level (containing thousands of targets) and up to 100 times the scale variation. Among them, the differences in target pose, scale, and occlusion are huge, and most existing target detection algorithms cannot directly process them. To solve these problems, we propose a new multi-target pedestrian and vehicle detector PVDet (Towards Pedestrian and Vehicle Detection on Gigapixel-level images) for gigapixel-level images. First, the DPRNet (Deformable deeP Residual Network) is designed as the backbone network to enhance the effective perceptual field and improve the feature representation of pose varying and occluded targets. Then, the PAFPN (Path Aggregation Feature Pyramid Network) is adopted to process the multi-scale features extracted by the backbone, boosting the multi-scale target modeling capability and the localization of small targets. Finally, the DyHead module is introduced to enhance the detection head’s scale, spatial and task awareness, further optimizing pedestrian and vehicle classification and localization. Compared with other State-of-the-Art methods on the PANDA dataset, the experimental results show that the proposed method dramatically improves AP of pedestrian and vehicle detection in gigapixel-level images by 10.4 AP over baseline, which is better than the existing target detection algorithms. We also conducted experiments on the PASCAL VOC 2012 dataset to further demonstrate the generalization capability and effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
七一发布了新的文献求助20
2秒前
逝月完成签到,获得积分10
3秒前
燕子完成签到,获得积分10
3秒前
李爱国应助风中的玲采纳,获得10
4秒前
EMMA发布了新的文献求助10
4秒前
4秒前
animenz完成签到,获得积分10
4秒前
4秒前
sissisue完成签到,获得积分10
5秒前
5秒前
今后应助慕涔采纳,获得10
5秒前
yuan发布了新的文献求助10
5秒前
yolo发布了新的文献求助10
6秒前
闪闪完成签到 ,获得积分10
6秒前
薰硝壤应助开朗的觅柔采纳,获得160
7秒前
打打应助孤岛采纳,获得10
8秒前
8秒前
稳重飞飞完成签到,获得积分10
9秒前
71Qi发布了新的文献求助10
9秒前
MZ完成签到,获得积分10
9秒前
10秒前
nini发布了新的文献求助10
10秒前
11秒前
小蘑菇应助张英俊采纳,获得10
12秒前
12秒前
舒心小猫咪完成签到 ,获得积分10
12秒前
13秒前
13秒前
14秒前
pl发布了新的文献求助10
14秒前
失眠迎蕾发布了新的文献求助30
14秒前
15秒前
爱听歌的孤容完成签到 ,获得积分10
15秒前
jby发布了新的文献求助10
16秒前
song完成签到 ,获得积分10
16秒前
周亭完成签到,获得积分10
17秒前
积极的身影完成签到,获得积分10
17秒前
情怀应助小牛牛采纳,获得10
18秒前
JoaquinH发布了新的文献求助10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135235
求助须知:如何正确求助?哪些是违规求助? 2786181
关于积分的说明 7776022
捐赠科研通 2442078
什么是DOI,文献DOI怎么找? 1298417
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847