PVDet: Towards pedestrian and vehicle detection on gigapixel-level images

计算机科学 人工智能 计算机视觉 目标检测 棱锥(几何) 行人 骨干网 行人检测 残余物 过程(计算) 特征(语言学) 模式识别(心理学) 电信 算法 物理 哲学 工程类 光学 操作系统 语言学 运输工程
作者
Wanghao Mo,Wendong Zhang,Hongyang Wei,Ruyi Cao,Yan Ke,Yiwen Luo
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:118: 105705-105705 被引量:5
标识
DOI:10.1016/j.engappai.2022.105705
摘要

Recently, gigapixel photography has been developed considerably and gradually put into remote sensing, video surveillance, etc. Gigapixel images have a visible field of view area at the square-kilometer level (containing thousands of targets) and up to 100 times the scale variation. Among them, the differences in target pose, scale, and occlusion are huge, and most existing target detection algorithms cannot directly process them. To solve these problems, we propose a new multi-target pedestrian and vehicle detector PVDet (Towards Pedestrian and Vehicle Detection on Gigapixel-level images) for gigapixel-level images. First, the DPRNet (Deformable deeP Residual Network) is designed as the backbone network to enhance the effective perceptual field and improve the feature representation of pose varying and occluded targets. Then, the PAFPN (Path Aggregation Feature Pyramid Network) is adopted to process the multi-scale features extracted by the backbone, boosting the multi-scale target modeling capability and the localization of small targets. Finally, the DyHead module is introduced to enhance the detection head’s scale, spatial and task awareness, further optimizing pedestrian and vehicle classification and localization. Compared with other State-of-the-Art methods on the PANDA dataset, the experimental results show that the proposed method dramatically improves AP of pedestrian and vehicle detection in gigapixel-level images by 10.4 AP over baseline, which is better than the existing target detection algorithms. We also conducted experiments on the PASCAL VOC 2012 dataset to further demonstrate the generalization capability and effectiveness of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yznfly应助机灵柚子采纳,获得50
刚刚
1秒前
2秒前
sikang发布了新的文献求助10
2秒前
wm关闭了wm文献求助
2秒前
999完成签到,获得积分10
2秒前
2秒前
3秒前
科研通AI6.1应助young采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
不相厌发布了新的文献求助10
3秒前
简单沛山发布了新的文献求助10
3秒前
安静代萱完成签到 ,获得积分10
4秒前
Echo完成签到,获得积分10
5秒前
5秒前
害羞的衫发布了新的文献求助10
7秒前
踏实水之发布了新的文献求助10
7秒前
陈露佳发布了新的文献求助10
8秒前
8秒前
牛油果发布了新的文献求助10
8秒前
8秒前
科研通AI2S应助科研爱好者采纳,获得10
8秒前
木木三完成签到 ,获得积分10
9秒前
优秀的小蚂蚁完成签到,获得积分10
9秒前
搜集达人应助sikang采纳,获得10
10秒前
10秒前
llm19完成签到,获得积分10
10秒前
sssjjjxx完成签到,获得积分20
10秒前
imi发布了新的文献求助10
11秒前
天天快乐应助Koi采纳,获得10
11秒前
谢谢大佬完成签到,获得积分10
12秒前
深情安青应助夏沫星星球采纳,获得10
12秒前
keanu发布了新的文献求助10
13秒前
13秒前
木木三关注了科研通微信公众号
13秒前
华仔应助Zzzz采纳,获得10
13秒前
害羞的衫完成签到,获得积分10
13秒前
14秒前
拼搏迎梦完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762181
求助须知:如何正确求助?哪些是违规求助? 5534311
关于积分的说明 15402288
捐赠科研通 4898393
什么是DOI,文献DOI怎么找? 2634850
邀请新用户注册赠送积分活动 1583000
关于科研通互助平台的介绍 1538201