PVDet: Towards pedestrian and vehicle detection on gigapixel-level images

计算机科学 人工智能 计算机视觉 目标检测 棱锥(几何) 行人 骨干网 行人检测 残余物 过程(计算) 特征(语言学) 模式识别(心理学) 电信 算法 物理 哲学 工程类 光学 操作系统 语言学 运输工程
作者
Wanghao Mo,Wendong Zhang,Hongyang Wei,Ruyi Cao,Yan Ke,Yiwen Luo
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:118: 105705-105705 被引量:5
标识
DOI:10.1016/j.engappai.2022.105705
摘要

Recently, gigapixel photography has been developed considerably and gradually put into remote sensing, video surveillance, etc. Gigapixel images have a visible field of view area at the square-kilometer level (containing thousands of targets) and up to 100 times the scale variation. Among them, the differences in target pose, scale, and occlusion are huge, and most existing target detection algorithms cannot directly process them. To solve these problems, we propose a new multi-target pedestrian and vehicle detector PVDet (Towards Pedestrian and Vehicle Detection on Gigapixel-level images) for gigapixel-level images. First, the DPRNet (Deformable deeP Residual Network) is designed as the backbone network to enhance the effective perceptual field and improve the feature representation of pose varying and occluded targets. Then, the PAFPN (Path Aggregation Feature Pyramid Network) is adopted to process the multi-scale features extracted by the backbone, boosting the multi-scale target modeling capability and the localization of small targets. Finally, the DyHead module is introduced to enhance the detection head’s scale, spatial and task awareness, further optimizing pedestrian and vehicle classification and localization. Compared with other State-of-the-Art methods on the PANDA dataset, the experimental results show that the proposed method dramatically improves AP of pedestrian and vehicle detection in gigapixel-level images by 10.4 AP over baseline, which is better than the existing target detection algorithms. We also conducted experiments on the PASCAL VOC 2012 dataset to further demonstrate the generalization capability and effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助zyk采纳,获得10
刚刚
1秒前
温暖的沛凝完成签到 ,获得积分10
2秒前
CipherSage应助秋秋采纳,获得10
2秒前
ZAPAR发布了新的文献求助10
5秒前
6秒前
7秒前
sciforce完成签到,获得积分10
7秒前
Liufgui应助会飞的鱼采纳,获得30
8秒前
在水一方应助小秋采纳,获得10
10秒前
ronnie发布了新的文献求助10
11秒前
隐形曼青应助123123采纳,获得10
11秒前
yym发布了新的文献求助10
13秒前
Kiki发布了新的文献求助30
14秒前
15秒前
16秒前
weiwei完成签到 ,获得积分10
16秒前
crane完成签到,获得积分10
16秒前
JamesPei应助温暖寻雪采纳,获得10
17秒前
mqq完成签到 ,获得积分10
17秒前
Hehehehe完成签到 ,获得积分10
17秒前
Hello应助海洋球采纳,获得10
18秒前
苏栀发布了新的文献求助10
19秒前
刘林美发布了新的文献求助10
19秒前
20秒前
PZL发布了新的文献求助10
23秒前
25秒前
繁荣的代秋完成签到 ,获得积分10
26秒前
红宝发布了新的文献求助10
26秒前
28秒前
动听的雅绿完成签到 ,获得积分10
28秒前
28秒前
yym完成签到,获得积分10
29秒前
壹君完成签到,获得积分10
31秒前
顾矜应助黄贰叁采纳,获得10
32秒前
鱼儿想游发布了新的文献求助10
33秒前
dingkaixin发布了新的文献求助10
33秒前
斑鸠发布了新的文献求助10
33秒前
柠檬加乌梅完成签到,获得积分10
35秒前
36秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999224
求助须知:如何正确求助?哪些是违规求助? 3538589
关于积分的说明 11274664
捐赠科研通 3277444
什么是DOI,文献DOI怎么找? 1807597
邀请新用户注册赠送积分活动 883950
科研通“疑难数据库(出版商)”最低求助积分说明 810080