PVDet: Towards pedestrian and vehicle detection on gigapixel-level images

计算机科学 人工智能 计算机视觉 目标检测 棱锥(几何) 行人 骨干网 行人检测 残余物 过程(计算) 特征(语言学) 模式识别(心理学) 电信 算法 物理 哲学 工程类 光学 操作系统 语言学 运输工程
作者
Wanghao Mo,Wendong Zhang,Hongyang Wei,Ruyi Cao,Yan Ke,Yiwen Luo
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:118: 105705-105705 被引量:5
标识
DOI:10.1016/j.engappai.2022.105705
摘要

Recently, gigapixel photography has been developed considerably and gradually put into remote sensing, video surveillance, etc. Gigapixel images have a visible field of view area at the square-kilometer level (containing thousands of targets) and up to 100 times the scale variation. Among them, the differences in target pose, scale, and occlusion are huge, and most existing target detection algorithms cannot directly process them. To solve these problems, we propose a new multi-target pedestrian and vehicle detector PVDet (Towards Pedestrian and Vehicle Detection on Gigapixel-level images) for gigapixel-level images. First, the DPRNet (Deformable deeP Residual Network) is designed as the backbone network to enhance the effective perceptual field and improve the feature representation of pose varying and occluded targets. Then, the PAFPN (Path Aggregation Feature Pyramid Network) is adopted to process the multi-scale features extracted by the backbone, boosting the multi-scale target modeling capability and the localization of small targets. Finally, the DyHead module is introduced to enhance the detection head’s scale, spatial and task awareness, further optimizing pedestrian and vehicle classification and localization. Compared with other State-of-the-Art methods on the PANDA dataset, the experimental results show that the proposed method dramatically improves AP of pedestrian and vehicle detection in gigapixel-level images by 10.4 AP over baseline, which is better than the existing target detection algorithms. We also conducted experiments on the PASCAL VOC 2012 dataset to further demonstrate the generalization capability and effectiveness of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oneday发布了新的文献求助10
刚刚
大模型应助能干吐司采纳,获得10
1秒前
1秒前
bkagyin应助llli采纳,获得20
1秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
Mida应助科研通管家采纳,获得10
2秒前
求助人员应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
Rokemonis3Kg完成签到,获得积分10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
维奈克拉应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得30
3秒前
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
顺利萃发布了新的文献求助10
3秒前
ilihe应助科研通管家采纳,获得10
3秒前
WizBLue完成签到,获得积分10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
3秒前
求助人员应助科研通管家采纳,获得10
3秒前
3秒前
Owen应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
3秒前
求助人员应助科研通管家采纳,获得10
3秒前
3秒前
和谐青柏应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637437
求助须知:如何正确求助?哪些是违规求助? 4743337
关于积分的说明 14999087
捐赠科研通 4795612
什么是DOI,文献DOI怎么找? 2562091
邀请新用户注册赠送积分活动 1521554
关于科研通互助平台的介绍 1481559