作者
Kun Ren,Ruijie Wang,Shinuo Fang,Shumeng Ren,Hui‐Ming Hua,Dongmei Wang,Yingni Pan,Xiaoqiu Liu
摘要
As a traditional Chinese medicine, Euodiae Fructus (EF) has been used to treat stomachache, belching, and emesis for more than a thousand years. Ancient records and modern research have shown that EF has mild toxicity, which needs to be processed with licorice juice to reduce its toxicity. Research suggested that the toxicity of EF can be caused by in vivo metabolism, but whether its metabolites are related to hepatotoxicity and whether licorice can affect the metabolism of EF have not been reported, which needed an effective strategy to clarify the correlation between metabolites and toxicity and the attenuation mechanism of licorice processing.The poisonous substances and metabolic pathways were clarified by comparing the mechanism in vivo process of the main alkaloids of EF in normal rats and rats treated with dexamethasone (DXMS), ketoconazole (KTC), and EF processed with licorice (EFP).Rats were given EF and EFP by oral administration, respectively. The EF + DXMS and EF + KTC groups were pretreated with DXMS and KTC, respectively, by i. p. for seven days, and their toxicity differences were compared. The comprehensive strategy based on UPLC-Q-Exactive-MS and Orthogonal Partial Least Squares Discriminant Analysis was developed to compare the types and contents of metabolites and clarify the metabolic pathways of alkaloids among EF, EFP, EF + KTC, and EF + DXMS groups.EF + DXMS group significantly increased the hepatotoxicity, whereas the EF + KTC and EFP groups reduced the hepatotoxicity compared with the EF group. One hundred and thirty-five metabolites were detected, and the metabolic pathways of the main alkaloid components related to toxicity were inferred in the plasma, urine, feces, and bile of rats. KTC and licorice similarly inhibited the production of toxic metabolites, changed metabolism in vivo, and produced many new II and a few phases I metabolites, while the contents of toxic metabolites increased in the DXMS group.Licorice and KTC could inhibit the production of metabolites of EF related to toxicity, increase the production of other metabolites and promote the excretion of alkaloids, which may be why licorice and KTC can minimize EF toxicity.