Graphene electrochemical transistor incorporated with gel electrolyte for wearable and non-invasive glucose monitoring

石墨烯 晶体管 纳米技术 电解质 可穿戴计算机 电极 检出限 光电子学 材料科学 氧化物 弯曲半径 化学 弯曲 电压 计算机科学 复合材料 电气工程 色谱法 嵌入式系统 物理化学 工程类 冶金
作者
Nan Gao,Rui Zhou,Bo Tu,Tian Tao,Yongqiao Song,Zhiwei Cai,Hanping He,Gang Chang,Yuxiang Wu,Yunbin He
出处
期刊:Analytica Chimica Acta [Elsevier BV]
卷期号:1239: 340719-340719 被引量:27
标识
DOI:10.1016/j.aca.2022.340719
摘要

With the rapid development of wearable electronic devices, health monitoring is undergoing a fundamental shift from hospital-centered treatment to patient-centered diagnosis. Solution-gated graphene transistors provide an effective platform for developing high-sensitivity wearable devices due to their unique signal amplification, low energy consumption, and compatibility for miniaturization. However, it is still a major challenge to perform real-time sweat composition monitoring directly on the dry skin surface. In this work, a skin-based flexible gel electrolyte graphene transistor (GEGT) was successfully designed and fabricated for glucose detection, consisting of a gate electrode decorated with Au nanoparticles modified reduced graphene oxide (AuNPs/RGO) nanocomposites and a monolayer graphene channel. Glycerin gel was used to replace the traditional liquid electrolyte, not only could better fit the human skin, but also play the role of fluid collection, providing stable testing conditions for the sensor. Based on the high electron mobility of graphene channel and the excellent electrocatalytic performance of AuNPs/RGO nanocomposites, the constructed GEGT sensor exhibits excellent sensing performance for glucose with good selectivity, low operating voltage (0.5 V), wide detection range (10 nM - 25 mM), and low detection limit (10 nM). The device maintains stable performance after up to 1000 bending cycles with a bending radius of 4 mm. In addition, the GEGT sensor displays good accuracy in sweat detection and sensitive dynamic response during actual wearing, which provides a guarantee for the construction of wearable transistor devices and real-time health tracking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
916应助科研通管家采纳,获得10
刚刚
Zhanghh87应助勤奋幻柏采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
Demons完成签到,获得积分10
1秒前
大个应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
凭栏听雨发布了新的文献求助10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得30
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
PQ发布了新的文献求助10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
卡卡西应助科研通管家采纳,获得30
2秒前
2秒前
天天快乐应助balabala采纳,获得10
2秒前
BINGBING完成签到,获得积分10
2秒前
KK发布了新的文献求助10
2秒前
Regina_thu发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
汉堡包应助苏杉杉采纳,获得10
3秒前
完美世界应助Wangyn采纳,获得10
4秒前
LUKW发布了新的文献求助150
4秒前
于乔完成签到,获得积分10
5秒前
6秒前
Lucas应助一瓶水采纳,获得10
6秒前
KK发布了新的文献求助10
6秒前
7秒前
crystaler完成签到,获得积分10
9秒前
ming完成签到 ,获得积分10
9秒前
eazin完成签到 ,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
从容芮应助风雨中飘摇采纳,获得100
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650