纳米棒
光催化
异质结
材料科学
制氢
辐照
氧化还原
吸收边
比表面积
催化作用
光化学
化学工程
纳米技术
光电子学
带隙
化学
生物化学
物理
工程类
核物理学
冶金
作者
Mengyu Zhao,Sen Liu,Daimei Chen,Sushu Zhang,Sónia A. C. Carabineiro,Kangle Lv
出处
期刊:Chinese Journal of Catalysis
[China Science Publishing & Media Ltd.]
日期:2022-01-01
卷期号:43 (10): 2615-2624
被引量:101
标识
DOI:10.1016/s1872-2067(22)64134-2
摘要
In-plane epitaxial growth of ZnIn2S4 nanosheets on the surface of hexagonal phase WO3 nanorods was achieved by a facile solvothermal method. The unique 3D heterostructure not only enlarged the specific surface area, but also red-shifted the absorption edge from 381 to 476 nm to improve the light harvesting ability, which largely enhanced the photocatalytic hydrogen evolution. The H2 production rate of the best performing ZnIn2S4/WO3 photocatalyst (ZIS-2.5/W, the material with a molar rate of ZnIn2S4 (ZIS) to WO3 (W) of 2.5) was 300 μmol·g−1·h−1, around 417 times and 2 times higher than the rates of pristine WO3 and ZnIn2S4, respectively. The apparent quantum efficiency for ZIS-2.5/W composite was up to 2.81% at 400 nm. Based on the difference in Fermi levels between WO3 and ZnIn2S4, and the distribution of the redox active sites on WO3/ZnIn2S4 heterostructure, a S-scheme electron transfer mechanism was proposed to illustrate the improved photocatalytic activity of WO3/ZnIn2S4 heterojunction, which not only stimulated the spatial separation of the photogenerated charge carriers, but also maintained the strong reduction/oxidation ability of the photocatalyst.
科研通智能强力驱动
Strongly Powered by AbleSci AI