塔菲尔方程
催化作用
贵金属
无机化学
化学
氢
氧化物
电催化剂
离解(化学)
钴
氧化钴
电化学
有机化学
电极
物理化学
作者
Zhigang Chen,Huimin Hu,Lichang Yin,Zhigang Zhao,Jin–Ho Choi,Gang Liu,Fengxia Geng
标识
DOI:10.1073/pnas.2209760120
摘要
Using hydrogen as a fuel is an effective way to combat energy crisis and at the same time reduce greenhouse gas emission. Alkaline hydrogen evolution reaction (HER) is one important way to obtain green hydrogen, which however is energy intensive and is difficult to obtain high efficiencies even when using state-of-the-art noble metal catalysts. Here, we report a three-component catalytic system using only non-noble elements, consisting of cobalt oxide clusters and single molybdenum atoms supported on oxyanion-terminated two-dimensional MXene, which enabled the unusual generation of hydrogen by a kinetically fast Volmer-Tafel process in an alkaline electrolyte. The key feature of this catalyst is that the three components are connected by bridging oxygen, which serves to immediately adsorb H* produced during water dissociation on cobalt oxide and relay it to the molybdenum single-atom catalyst. On the Mo atom, due to this unique coordination environment, the relayed H* intermediates directly combine and desorb, realizing H2 generation through an unusual Tafel pathway. The presence of bridging oxygen increases the acidity of the catalyst as Brønsted acid with the reversible adsorption and donation of a proton, thus eliminating the need for acid addition and ensuring excellent and sustainable alkaline HER performance. The performance of our catalyst is comparable to that of the commercial noble metal catalyst PtRu/C. Our work makes a significant contribution to designing efficient non-noble catalysts for alkaline HER electrocatalysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI