亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Review of Modern Machine Learning Techniques in the Prediction of Remaining Useful Life of Lithium-Ion Batteries

计算机科学 电池(电) 可扩展性 可再生能源 可靠性(半导体) 可用的 可靠性工程 汽车工程 过程(计算) 风险分析(工程) 工程类 业务 电气工程 操作系统 物理 万维网 功率(物理) 数据库 量子力学
作者
Prabhakar Sharma,Bhaskor Jyoti Bora
出处
期刊:Batteries [MDPI AG]
卷期号:9 (1): 13-13 被引量:66
标识
DOI:10.3390/batteries9010013
摘要

The intense increase in air pollution caused by vehicular emissions is one of the main causes of changing weather patterns and deteriorating health conditions. Furthermore, renewable energy sources, such as solar, wind, and biofuels, suffer from weather and supply chain-related uncertainties. The electric vehicles’ powered energy, stored in a battery, offers an attractive option to overcome emissions and uncertainties to a certain extent. The development and implementation of cutting-edge electric vehicles (EVs) with long driving ranges, safety, and higher reliability have been identified as critical to decarbonizing the transportation sector. Nonetheless, capacity deteriorating with time and usage, environmental degradation factors, and end-of-life repurposing pose significant challenges to the usage of lithium-ion batteries. In this aspect, determining a battery’s remaining usable life (RUL) establishes its efficacy. It also aids in the testing and development of various EV upgrades by identifying factors that will increase and improve their efficiency. Several nonlinear and complicated parameters are involved in the process. Machine learning (ML) methodologies have proven to be a promising tool for optimizing and modeling engineering challenges in this domain (non-linearity and complexity). In contrast to the scalability and temporal limits of battery degeneration, ML techniques provide a non-invasive solution with excellent accuracy and minimal processing. Based on recent research, this study presents an objective and comprehensive evaluation of these challenges. RUL estimations are explained in detail, including examples of its approach and applicability. Furthermore, many ML techniques for RUL evaluation are thoroughly and individually studied. Finally, an application-focused overview is offered, emphasizing the advantages in terms of efficiency and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
77完成签到 ,获得积分10
1秒前
科研通AI2S应助暖雪儿采纳,获得10
1秒前
21秒前
丝垚完成签到 ,获得积分10
23秒前
25秒前
34秒前
35秒前
37秒前
46秒前
50秒前
51秒前
科研通AI5应助科研通管家采纳,获得10
51秒前
51秒前
心随以动完成签到 ,获得积分10
51秒前
Gigi发布了新的文献求助10
52秒前
53秒前
55秒前
冷艳的立果应助Gigi采纳,获得10
59秒前
修辛完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
1分钟前
圆滚滚的栗子君完成签到 ,获得积分10
1分钟前
bkagyin应助ling采纳,获得10
1分钟前
善良的冷梅完成签到,获得积分10
1分钟前
2分钟前
马騳骉完成签到,获得积分10
2分钟前
2分钟前
2分钟前
zhaozi发布了新的文献求助10
2分钟前
zhaozi完成签到,获得积分10
2分钟前
雾蓝完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
Gzb发布了新的文献求助10
3分钟前
情怀应助Gzb采纳,获得10
3分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491339
求助须知:如何正确求助?哪些是违规求助? 3077921
关于积分的说明 9151234
捐赠科研通 2770492
什么是DOI,文献DOI怎么找? 1520508
邀请新用户注册赠送积分活动 704589
科研通“疑难数据库(出版商)”最低求助积分说明 702298