A Review of Modern Machine Learning Techniques in the Prediction of Remaining Useful Life of Lithium-Ion Batteries

计算机科学 电池(电) 可扩展性 可再生能源 可靠性(半导体) 可用的 可靠性工程 汽车工程 过程(计算) 风险分析(工程) 工程类 业务 电气工程 操作系统 物理 万维网 功率(物理) 数据库 量子力学
作者
Prabhakar Sharma,Bhaskor Jyoti Bora
出处
期刊:Batteries [Multidisciplinary Digital Publishing Institute]
卷期号:9 (1): 13-13 被引量:68
标识
DOI:10.3390/batteries9010013
摘要

The intense increase in air pollution caused by vehicular emissions is one of the main causes of changing weather patterns and deteriorating health conditions. Furthermore, renewable energy sources, such as solar, wind, and biofuels, suffer from weather and supply chain-related uncertainties. The electric vehicles’ powered energy, stored in a battery, offers an attractive option to overcome emissions and uncertainties to a certain extent. The development and implementation of cutting-edge electric vehicles (EVs) with long driving ranges, safety, and higher reliability have been identified as critical to decarbonizing the transportation sector. Nonetheless, capacity deteriorating with time and usage, environmental degradation factors, and end-of-life repurposing pose significant challenges to the usage of lithium-ion batteries. In this aspect, determining a battery’s remaining usable life (RUL) establishes its efficacy. It also aids in the testing and development of various EV upgrades by identifying factors that will increase and improve their efficiency. Several nonlinear and complicated parameters are involved in the process. Machine learning (ML) methodologies have proven to be a promising tool for optimizing and modeling engineering challenges in this domain (non-linearity and complexity). In contrast to the scalability and temporal limits of battery degeneration, ML techniques provide a non-invasive solution with excellent accuracy and minimal processing. Based on recent research, this study presents an objective and comprehensive evaluation of these challenges. RUL estimations are explained in detail, including examples of its approach and applicability. Furthermore, many ML techniques for RUL evaluation are thoroughly and individually studied. Finally, an application-focused overview is offered, emphasizing the advantages in terms of efficiency and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
得之我幸完成签到,获得积分10
刚刚
迷路采珊完成签到,获得积分10
1秒前
de完成签到,获得积分10
1秒前
Ww完成签到,获得积分10
1秒前
贡菜选手完成签到,获得积分10
2秒前
chinbaor完成签到,获得积分10
3秒前
3秒前
科研通AI2S应助孙雪君采纳,获得10
3秒前
4秒前
affff完成签到 ,获得积分10
4秒前
Hua发布了新的文献求助100
4秒前
5秒前
5秒前
taster驳回了凉凉应助
6秒前
听话的白易完成签到,获得积分20
6秒前
yangzhang完成签到,获得积分10
6秒前
超帅的豪英完成签到,获得积分10
7秒前
liam完成签到,获得积分10
8秒前
gaojing完成签到,获得积分10
9秒前
9秒前
研友_xnEOX8完成签到,获得积分10
9秒前
RMgX发布了新的文献求助10
10秒前
111完成签到,获得积分10
10秒前
机智雁凡完成签到,获得积分10
10秒前
花花完成签到 ,获得积分10
11秒前
红叶完成签到,获得积分10
11秒前
向蔚发布了新的文献求助10
11秒前
ldd完成签到,获得积分10
13秒前
坦率的惊蛰完成签到,获得积分10
13秒前
fei完成签到,获得积分10
13秒前
潇洒的白昼完成签到,获得积分10
14秒前
Owen应助赵寇采纳,获得10
14秒前
研友_xnEOX8发布了新的文献求助30
14秒前
15秒前
蓝豆子完成签到 ,获得积分10
15秒前
15秒前
无辜的夏兰完成签到,获得积分10
16秒前
weijian完成签到,获得积分10
16秒前
洪伟完成签到,获得积分10
18秒前
爽歪歪完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008933
求助须知:如何正确求助?哪些是违规求助? 3548669
关于积分的说明 11299538
捐赠科研通 3283228
什么是DOI,文献DOI怎么找? 1810311
邀请新用户注册赠送积分活动 886034
科研通“疑难数据库(出版商)”最低求助积分说明 811259