Exploring the Relationship Between Center and Neighborhoods: Central Vector Oriented Self-Similarity Network for Hyperspectral Image Classification

模式识别(心理学) 人工智能 像素 特征向量 计算机科学 特征(语言学) 相似性(几何) 卷积神经网络 空间分析 高光谱成像 支持向量机 卷积(计算机科学) 特征提取 数学 计算机视觉 人工神经网络 图像(数学) 统计 哲学 语言学
作者
Mingsong Li,Yikun Liu,Guangkuo Xue,Yuwen Huang,Gongping Yang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (4): 1979-1993 被引量:38
标识
DOI:10.1109/tcsvt.2022.3218284
摘要

To mine the spectral-spatial information of target pixel in hyperspectral image classification (HSIC), convolutional neural network (CNN)-based models widely adopt patch-based input pattern, where a patch represents its central pixel and the neighbor pixels play auxiliary roles in the classification process. However, compared to the central pixel, its neighbor pixels often have different contributions for classification. Although many existing patch-based CNNs could adaptively emphasize the spatial neighbor information, most of them ignore the latent relationship between the center pixel and its neighbor pixels. Moreover, efficient spectral-spatial feature extraction has been a difficult yet vital topic for HSIC. To address the mentioned problems, a central vector oriented self-similarity network (CVSSN) is proposed for HSIC. Specifically, based on two similarity measures, we firstly design an adaptive weight addition based spectral vector self-similarity module (AWA-SVSS) in input space and a Euclidean distance based feature vector self-similarity module (ED-FVSS) in feature space to fully mine the central vector oriented spatial relationships. Besides, a spectral-spatial information fusion module (SSIF) is formulated as a new pattern to fuse the central 1D spectral vector and the corresponding 3D patch for efficient spectral-spatial feature learning of the subsequent modules. Moreover, we implement a channel spatial separation convolution module (CSS-Conv) and a scale information complementary convolution module (SIC-Conv) for efficient spectral-spatial feature learning. Extensive experimental results on four popular HSI data sets demonstrate the effectiveness and efficiency of the proposed method compared with other state-of-the-art methods. The source code is available at https://github.com/lms-07/CVSSN
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
潘婷婷呀发布了新的文献求助10
1秒前
1秒前
边耶发布了新的文献求助10
1秒前
脑洞疼应助南风不竞采纳,获得30
1秒前
3秒前
曲曲完成签到,获得积分20
3秒前
屈灿发布了新的文献求助10
4秒前
传奇3应助杳鸢采纳,获得10
5秒前
6秒前
曲曲发布了新的文献求助30
6秒前
6秒前
Aprilapple完成签到,获得积分10
6秒前
负责青亦完成签到,获得积分10
7秒前
7秒前
zz发布了新的文献求助10
8秒前
谭杰完成签到,获得积分10
8秒前
人可司南完成签到 ,获得积分10
9秒前
听风随影发布了新的文献求助10
9秒前
9秒前
菠萝菠萝哒应助PenguinYW采纳,获得30
9秒前
aa完成签到,获得积分10
9秒前
壹号发布了新的文献求助10
11秒前
科研通AI5应助zz采纳,获得10
11秒前
11秒前
三毛完成签到,获得积分10
11秒前
11秒前
12秒前
苽峰发布了新的文献求助10
12秒前
好想睡觉完成签到,获得积分10
12秒前
咔咔发布了新的文献求助10
12秒前
13秒前
14秒前
JudgeGoodwin完成签到,获得积分10
14秒前
zjspidany完成签到,获得积分10
15秒前
安安发布了新的文献求助10
15秒前
星星完成签到,获得积分10
16秒前
小周发布了新的文献求助10
16秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514977
求助须知:如何正确求助?哪些是违规求助? 3097303
关于积分的说明 9235135
捐赠科研通 2792262
什么是DOI,文献DOI怎么找? 1532392
邀请新用户注册赠送积分活动 712025
科研通“疑难数据库(出版商)”最低求助积分说明 707090