ACS: Accuracy-based client selection mechanism for federated industrial IoT

计算机科学 选择(遗传算法) MNIST数据库 证书 机器学习 分布式计算 数据挖掘 人工智能 理论计算机科学 深度学习
作者
Made Adi Paramartha Putra,Adinda Riztia Putri,Ahmad Zainudin,Dong‐Seong Kim,Jae‐Min Lee
出处
期刊:Internet of things [Elsevier BV]
卷期号:21: 100657-100657 被引量:27
标识
DOI:10.1016/j.iot.2022.100657
摘要

This study proposes secure federated learning (FL)-based architecture for the industrial internet of things (IIoT) with a novel client selection mechanism to enhance the learning performance. In order to secure the FL architecture and ensure that available clients are trustworthy, a certificate authority (CA) is adopted. In traditional FL, an aggregation technique known as federated averaging (FedAvg) is utilized to collect local model parameters by selecting a random subset of clients for the training process. However, the random selection may lead to uncertainty and negatively influence the overall FL performance. Moreover, state-of-the-art studies on client selection mainly rely on client’s additional information, which raises a privacy issue. Therefore, a novel client selection mechanism based on client evaluation accuracy called ACS is introduced in this work to improve FL performance while preserving client privacy. Unlike other client selection methods, ACS relies only on the updated local parameter, which is evaluated in the FL server. The proposed ACS considers the highest-performing clients to fasten the convergence time in the FL. Based on the extensive performance evaluation performed in this work using MNIST and F-MNIST datasets with non-independent identically distributed (non-IID) conditions, the adoption of ACS successfully improved the overall performance of FL in terms of accuracy and F1-score with an average of 4.62%. Furthermore, comparative analysis shows that the proposed ACS can achieve specific accuracy with 2.29% lower communication rounds and stable performance compared to other client selection mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yang发布了新的文献求助10
刚刚
1秒前
虚心的夏青完成签到,获得积分10
1秒前
爱狗先森完成签到,获得积分10
1秒前
1秒前
李健的小迷弟应助Cora采纳,获得10
1秒前
大个应助haha采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
fox199753206完成签到,获得积分10
2秒前
2秒前
小王很哇塞完成签到 ,获得积分20
2秒前
Owen应助lzz采纳,获得10
2秒前
小二郎应助chifan采纳,获得10
3秒前
子车茗应助xiaosongmufaeins采纳,获得20
4秒前
所所应助Satan采纳,获得10
4秒前
科研通AI5应助生动的翠容采纳,获得10
4秒前
神猪完成签到,获得积分10
4秒前
zuhayr发布了新的文献求助10
4秒前
123131发布了新的文献求助10
5秒前
5秒前
5秒前
糕冷草莓发布了新的文献求助10
5秒前
WJW发布了新的文献求助10
5秒前
mzhmhy完成签到,获得积分10
5秒前
852应助沉默的莞采纳,获得20
6秒前
JamesPei应助闪闪如南采纳,获得10
6秒前
Jasper应助DD采纳,获得10
7秒前
7秒前
SciGPT应助123131采纳,获得10
8秒前
饱满帽子发布了新的文献求助10
8秒前
南楼归雁发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
扶风完成签到,获得积分10
10秒前
手中的樱花完成签到,获得积分10
10秒前
徐昊雯发布了新的文献求助10
10秒前
一个大西瓜完成签到,获得积分10
10秒前
CodeCraft应助renshiq采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437