亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ACS: Accuracy-based client selection mechanism for federated industrial IoT

计算机科学 选择(遗传算法) MNIST数据库 证书 机器学习 分布式计算 数据挖掘 人工智能 理论计算机科学 深度学习
作者
Made Adi Paramartha Putra,Adinda Riztia Putri,Ahmad Zainudin,Dong‐Seong Kim,Jae‐Min Lee
出处
期刊:Internet of things [Elsevier BV]
卷期号:21: 100657-100657 被引量:27
标识
DOI:10.1016/j.iot.2022.100657
摘要

This study proposes secure federated learning (FL)-based architecture for the industrial internet of things (IIoT) with a novel client selection mechanism to enhance the learning performance. In order to secure the FL architecture and ensure that available clients are trustworthy, a certificate authority (CA) is adopted. In traditional FL, an aggregation technique known as federated averaging (FedAvg) is utilized to collect local model parameters by selecting a random subset of clients for the training process. However, the random selection may lead to uncertainty and negatively influence the overall FL performance. Moreover, state-of-the-art studies on client selection mainly rely on client’s additional information, which raises a privacy issue. Therefore, a novel client selection mechanism based on client evaluation accuracy called ACS is introduced in this work to improve FL performance while preserving client privacy. Unlike other client selection methods, ACS relies only on the updated local parameter, which is evaluated in the FL server. The proposed ACS considers the highest-performing clients to fasten the convergence time in the FL. Based on the extensive performance evaluation performed in this work using MNIST and F-MNIST datasets with non-independent identically distributed (non-IID) conditions, the adoption of ACS successfully improved the overall performance of FL in terms of accuracy and F1-score with an average of 4.62%. Furthermore, comparative analysis shows that the proposed ACS can achieve specific accuracy with 2.29% lower communication rounds and stable performance compared to other client selection mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz发布了新的文献求助10
1秒前
DJDJDDDJ发布了新的文献求助10
6秒前
幻影完成签到,获得积分10
23秒前
55秒前
白天亮完成签到,获得积分10
1分钟前
1分钟前
oleskarabach完成签到,获得积分20
1分钟前
1分钟前
1分钟前
Ldq应助科研通管家采纳,获得10
1分钟前
Ldq应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Ldq应助科研通管家采纳,获得10
1分钟前
2分钟前
大树努力要毕业完成签到,获得积分10
2分钟前
蒋康发布了新的文献求助10
2分钟前
2分钟前
2分钟前
蒋康发布了新的文献求助10
2分钟前
蒋康完成签到,获得积分20
3分钟前
Ava应助wait采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
上官若男应助澳澳采纳,获得10
4分钟前
4分钟前
wait发布了新的文献求助10
4分钟前
wait完成签到,获得积分20
4分钟前
4分钟前
Wu发布了新的文献求助10
4分钟前
Wu完成签到,获得积分10
4分钟前
4分钟前
yqt发布了新的文献求助10
5分钟前
P_Chem完成签到,获得积分10
5分钟前
丘比特应助科研通管家采纳,获得10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
霍碧完成签到,获得积分10
6分钟前
酷酷海豚完成签到,获得积分10
6分钟前
熊猫完成签到,获得积分10
6分钟前
山野有雾都完成签到 ,获得积分20
6分钟前
6分钟前
Hope发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5064609
求助须知:如何正确求助?哪些是违规求助? 4287554
关于积分的说明 13359137
捐赠科研通 4106129
什么是DOI,文献DOI怎么找? 2248427
邀请新用户注册赠送积分活动 1253947
关于科研通互助平台的介绍 1185322