ACS: Accuracy-based client selection mechanism for federated industrial IoT

计算机科学 选择(遗传算法) MNIST数据库 证书 机器学习 分布式计算 数据挖掘 人工智能 理论计算机科学 深度学习
作者
Made Adi Paramartha Putra,Adinda Riztia Putri,Ahmad Zainudin,Dong‐Seong Kim,Jae‐Min Lee
出处
期刊:Internet of things [Elsevier]
卷期号:21: 100657-100657 被引量:27
标识
DOI:10.1016/j.iot.2022.100657
摘要

This study proposes secure federated learning (FL)-based architecture for the industrial internet of things (IIoT) with a novel client selection mechanism to enhance the learning performance. In order to secure the FL architecture and ensure that available clients are trustworthy, a certificate authority (CA) is adopted. In traditional FL, an aggregation technique known as federated averaging (FedAvg) is utilized to collect local model parameters by selecting a random subset of clients for the training process. However, the random selection may lead to uncertainty and negatively influence the overall FL performance. Moreover, state-of-the-art studies on client selection mainly rely on client’s additional information, which raises a privacy issue. Therefore, a novel client selection mechanism based on client evaluation accuracy called ACS is introduced in this work to improve FL performance while preserving client privacy. Unlike other client selection methods, ACS relies only on the updated local parameter, which is evaluated in the FL server. The proposed ACS considers the highest-performing clients to fasten the convergence time in the FL. Based on the extensive performance evaluation performed in this work using MNIST and F-MNIST datasets with non-independent identically distributed (non-IID) conditions, the adoption of ACS successfully improved the overall performance of FL in terms of accuracy and F1-score with an average of 4.62%. Furthermore, comparative analysis shows that the proposed ACS can achieve specific accuracy with 2.29% lower communication rounds and stable performance compared to other client selection mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nice1334发布了新的文献求助10
1秒前
万能图书馆应助ikea1984采纳,获得10
1秒前
臧真发布了新的文献求助10
1秒前
无所谓啊完成签到 ,获得积分10
2秒前
xiao完成签到,获得积分10
3秒前
3秒前
3秒前
科研通AI2S应助晨霜采纳,获得10
4秒前
小张完成签到 ,获得积分10
5秒前
xiao发布了新的文献求助10
5秒前
6秒前
7秒前
king19861119完成签到,获得积分0
7秒前
爱笑灵竹发布了新的文献求助20
7秒前
开朗的诗槐完成签到 ,获得积分10
8秒前
9秒前
10秒前
10秒前
科研小白鼠完成签到,获得积分10
10秒前
眼睛大的从雪完成签到,获得积分10
10秒前
李小丫发布了新的文献求助10
14秒前
薄荷小新完成签到 ,获得积分10
14秒前
PLT完成签到,获得积分10
14秒前
15秒前
15秒前
撒旦发布了新的文献求助30
15秒前
果果完成签到,获得积分20
17秒前
完美世界应助酥小苏采纳,获得10
18秒前
彭于晏应助yumemakase采纳,获得10
19秒前
19秒前
冰冰完成签到,获得积分10
20秒前
MYYY完成签到,获得积分10
20秒前
真实的半仙完成签到,获得积分20
20秒前
Akim应助超帅凡阳采纳,获得10
20秒前
852应助youbin采纳,获得10
21秒前
wanci应助BING采纳,获得10
21秒前
wo发布了新的文献求助10
22秒前
撒旦完成签到,获得积分20
22秒前
不配.应助研二发核心采纳,获得20
22秒前
23秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129103
求助须知:如何正确求助?哪些是违规求助? 2779953
关于积分的说明 7745314
捐赠科研通 2435069
什么是DOI,文献DOI怎么找? 1293897
科研通“疑难数据库(出版商)”最低求助积分说明 623472
版权声明 600542