ACS: Accuracy-based client selection mechanism for federated industrial IoT

计算机科学 选择(遗传算法) MNIST数据库 证书 机器学习 分布式计算 数据挖掘 人工智能 理论计算机科学 深度学习
作者
Made Adi Paramartha Putra,Adinda Riztia Putri,Ahmad Zainudin,Dong‐Seong Kim,Jae‐Min Lee
出处
期刊:Internet of things [Elsevier]
卷期号:21: 100657-100657 被引量:27
标识
DOI:10.1016/j.iot.2022.100657
摘要

This study proposes secure federated learning (FL)-based architecture for the industrial internet of things (IIoT) with a novel client selection mechanism to enhance the learning performance. In order to secure the FL architecture and ensure that available clients are trustworthy, a certificate authority (CA) is adopted. In traditional FL, an aggregation technique known as federated averaging (FedAvg) is utilized to collect local model parameters by selecting a random subset of clients for the training process. However, the random selection may lead to uncertainty and negatively influence the overall FL performance. Moreover, state-of-the-art studies on client selection mainly rely on client’s additional information, which raises a privacy issue. Therefore, a novel client selection mechanism based on client evaluation accuracy called ACS is introduced in this work to improve FL performance while preserving client privacy. Unlike other client selection methods, ACS relies only on the updated local parameter, which is evaluated in the FL server. The proposed ACS considers the highest-performing clients to fasten the convergence time in the FL. Based on the extensive performance evaluation performed in this work using MNIST and F-MNIST datasets with non-independent identically distributed (non-IID) conditions, the adoption of ACS successfully improved the overall performance of FL in terms of accuracy and F1-score with an average of 4.62%. Furthermore, comparative analysis shows that the proposed ACS can achieve specific accuracy with 2.29% lower communication rounds and stable performance compared to other client selection mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助Kai采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
JamesPei应助阔达的冷霜采纳,获得10
2秒前
2秒前
Asteria完成签到,获得积分10
2秒前
偏偏海完成签到,获得积分10
2秒前
iron完成签到,获得积分10
3秒前
菜菜完成签到,获得积分10
3秒前
贺兰鸵鸟完成签到,获得积分10
3秒前
qqq发布了新的文献求助10
4秒前
哈哈完成签到,获得积分10
4秒前
5秒前
酷炫的红牛完成签到,获得积分10
5秒前
肖婉婷完成签到,获得积分10
5秒前
漾漾完成签到,获得积分10
6秒前
sweet甜昕完成签到 ,获得积分10
6秒前
kaunis完成签到,获得积分10
6秒前
7秒前
归尘发布了新的文献求助20
7秒前
7秒前
学无止境完成签到,获得积分10
7秒前
瓜瓜瓜完成签到 ,获得积分10
7秒前
8秒前
研友_VZG7GZ应助俏皮诺言采纳,获得10
8秒前
milan001完成签到,获得积分10
8秒前
老迟到的可兰完成签到,获得积分10
9秒前
9秒前
liang19640908完成签到 ,获得积分10
9秒前
9秒前
HL完成签到,获得积分10
9秒前
此间少年发布了新的文献求助10
10秒前
大个应助TB123采纳,获得10
10秒前
Ww完成签到,获得积分10
11秒前
Sir.夏季风完成签到,获得积分10
11秒前
南汉高贵的陈皮完成签到 ,获得积分10
11秒前
tcf应助韩野采纳,获得10
11秒前
Rae完成签到 ,获得积分10
12秒前
dogsday完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439032
求助须知:如何正确求助?哪些是违规求助? 4550108
关于积分的说明 14222413
捐赠科研通 4471061
什么是DOI,文献DOI怎么找? 2450182
邀请新用户注册赠送积分活动 1441117
关于科研通互助平台的介绍 1417735