ACS: Accuracy-based client selection mechanism for federated industrial IoT

计算机科学 选择(遗传算法) MNIST数据库 证书 机器学习 分布式计算 数据挖掘 人工智能 理论计算机科学 深度学习
作者
Made Adi Paramartha Putra,Adinda Riztia Putri,Ahmad Zainudin,Dong‐Seong Kim,Jae‐Min Lee
出处
期刊:Internet of things [Elsevier BV]
卷期号:21: 100657-100657 被引量:27
标识
DOI:10.1016/j.iot.2022.100657
摘要

This study proposes secure federated learning (FL)-based architecture for the industrial internet of things (IIoT) with a novel client selection mechanism to enhance the learning performance. In order to secure the FL architecture and ensure that available clients are trustworthy, a certificate authority (CA) is adopted. In traditional FL, an aggregation technique known as federated averaging (FedAvg) is utilized to collect local model parameters by selecting a random subset of clients for the training process. However, the random selection may lead to uncertainty and negatively influence the overall FL performance. Moreover, state-of-the-art studies on client selection mainly rely on client’s additional information, which raises a privacy issue. Therefore, a novel client selection mechanism based on client evaluation accuracy called ACS is introduced in this work to improve FL performance while preserving client privacy. Unlike other client selection methods, ACS relies only on the updated local parameter, which is evaluated in the FL server. The proposed ACS considers the highest-performing clients to fasten the convergence time in the FL. Based on the extensive performance evaluation performed in this work using MNIST and F-MNIST datasets with non-independent identically distributed (non-IID) conditions, the adoption of ACS successfully improved the overall performance of FL in terms of accuracy and F1-score with an average of 4.62%. Furthermore, comparative analysis shows that the proposed ACS can achieve specific accuracy with 2.29% lower communication rounds and stable performance compared to other client selection mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助木木彡采纳,获得20
1秒前
ght发布了新的文献求助10
2秒前
3秒前
twob发布了新的文献求助10
3秒前
6秒前
wanci应助晶生采纳,获得10
6秒前
7秒前
邢夏之发布了新的文献求助10
9秒前
yznfly完成签到,获得积分0
10秒前
11完成签到,获得积分20
11秒前
jay完成签到 ,获得积分10
12秒前
yzz发布了新的文献求助20
12秒前
Jeffery426完成签到,获得积分10
12秒前
大模型应助twob采纳,获得10
13秒前
共享精神应助知识探索家采纳,获得10
14秒前
19秒前
fffzy完成签到,获得积分10
20秒前
21秒前
11关注了科研通微信公众号
21秒前
yzz完成签到,获得积分20
21秒前
savica完成签到,获得积分10
23秒前
葛稀完成签到,获得积分10
24秒前
基金中中中完成签到,获得积分10
24秒前
mc应助王旺碎冰冰采纳,获得10
24秒前
24秒前
26秒前
下雨的颜色完成签到,获得积分10
26秒前
27秒前
我爱吃水果完成签到,获得积分10
27秒前
晶生完成签到,获得积分10
28秒前
桐桐应助早点睡采纳,获得10
29秒前
Hello应助cai采纳,获得10
29秒前
water应助晚霞常有遗憾采纳,获得10
29秒前
张春月完成签到,获得积分10
30秒前
Ccccn完成签到 ,获得积分10
30秒前
domkps完成签到 ,获得积分10
30秒前
小俞发布了新的文献求助10
31秒前
zyx完成签到,获得积分10
32秒前
aaa关闭了aaa文献求助
32秒前
wanci应助我爱吃水果采纳,获得10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965864
求助须知:如何正确求助?哪些是违规求助? 3511176
关于积分的说明 11156785
捐赠科研通 3245809
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278