亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ACS: Accuracy-based client selection mechanism for federated industrial IoT

计算机科学 选择(遗传算法) MNIST数据库 证书 机器学习 分布式计算 数据挖掘 人工智能 理论计算机科学 深度学习
作者
Made Adi Paramartha Putra,Adinda Riztia Putri,Ahmad Zainudin,Dong‐Seong Kim,Jae‐Min Lee
出处
期刊:Internet of things [Elsevier]
卷期号:21: 100657-100657 被引量:27
标识
DOI:10.1016/j.iot.2022.100657
摘要

This study proposes secure federated learning (FL)-based architecture for the industrial internet of things (IIoT) with a novel client selection mechanism to enhance the learning performance. In order to secure the FL architecture and ensure that available clients are trustworthy, a certificate authority (CA) is adopted. In traditional FL, an aggregation technique known as federated averaging (FedAvg) is utilized to collect local model parameters by selecting a random subset of clients for the training process. However, the random selection may lead to uncertainty and negatively influence the overall FL performance. Moreover, state-of-the-art studies on client selection mainly rely on client’s additional information, which raises a privacy issue. Therefore, a novel client selection mechanism based on client evaluation accuracy called ACS is introduced in this work to improve FL performance while preserving client privacy. Unlike other client selection methods, ACS relies only on the updated local parameter, which is evaluated in the FL server. The proposed ACS considers the highest-performing clients to fasten the convergence time in the FL. Based on the extensive performance evaluation performed in this work using MNIST and F-MNIST datasets with non-independent identically distributed (non-IID) conditions, the adoption of ACS successfully improved the overall performance of FL in terms of accuracy and F1-score with an average of 4.62%. Furthermore, comparative analysis shows that the proposed ACS can achieve specific accuracy with 2.29% lower communication rounds and stable performance compared to other client selection mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助魏欣娜采纳,获得10
6秒前
小马甲应助cometx采纳,获得10
10秒前
风趣的梦露完成签到 ,获得积分10
16秒前
vinci完成签到,获得积分10
17秒前
淡淡的洋葱完成签到,获得积分10
25秒前
Panacea完成签到 ,获得积分10
26秒前
独特的易形完成签到 ,获得积分10
32秒前
36秒前
jeff完成签到,获得积分10
36秒前
38秒前
开胃咖喱完成签到,获得积分10
39秒前
Huzhu发布了新的文献求助10
45秒前
Tania完成签到,获得积分10
48秒前
56秒前
59秒前
1分钟前
cometx发布了新的文献求助10
1分钟前
1分钟前
花陵完成签到 ,获得积分10
1分钟前
帅气的熊猫完成签到,获得积分10
1分钟前
粽子完成签到,获得积分10
1分钟前
彭于晏应助阿瓜师傅采纳,获得10
1分钟前
1分钟前
不才完成签到,获得积分10
1分钟前
cometx完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
魏欣娜发布了新的文献求助10
1分钟前
2分钟前
去码头整点薯条完成签到,获得积分10
2分钟前
徐per爱豆完成签到 ,获得积分10
2分钟前
caca完成签到,获得积分0
2分钟前
3分钟前
ADcal完成签到 ,获得积分10
3分钟前
3分钟前
badabadaba关注了科研通微信公众号
3分钟前
3分钟前
3分钟前
badabadaba发布了新的文献求助30
3分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476330
求助须知:如何正确求助?哪些是违规求助? 4577995
关于积分的说明 14363306
捐赠科研通 4505871
什么是DOI,文献DOI怎么找? 2468931
邀请新用户注册赠送积分活动 1456508
关于科研通互助平台的介绍 1430177