Stochastic Volatility Modeling of Daily Streamflow Time Series

水流 ARCH模型 自回归模型 异方差 波动性(金融) 计量经济学 环境科学 条件方差 数学 统计 流域 地理 地图学
作者
Huimin Wang,Songbai Song,Gengxi Zhang,Olusola O. Ayantobo,Tianli Guo
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (1)
标识
DOI:10.1029/2021wr031662
摘要

Under the changing climate, the natural characteristics of hydrological processes are assumed to have been intensified, and the volatility of these processes to have increased significantly. However, the applicability of traditional time series analysis methods and the commonly used Gaussian GARCH (Generalized AutoRegressive Conditional Heteroskedasticity) to streamflow modeling has been limited. Although SV-type (stochastic volatility) models have appeared as competitive alternatives to GARCH-type models owing to their flexibility in modeling volatilities, they have not been applied in hydrological studies. Therefore, this study assesses the applicability of SV models to streamflow modeling using daily streamflow series from 21 hydrological stations in the Yellow River basin. Considering the influence of different types of GARCH and residual distributions, 7 hybrid models with variance fluctuation (fractional autoregressive integrated moving average-GARCH) based on 9 distributions are compared to determine the optimal model for each station. Then 4 SV-type models are introduced and compared with the results of the optimal GARCH-type model to verify their applicability. The results show that: (a) the Gaussian distribution is not applicable in both GARCH-type and SV-type models for modeling daily streamflow; (b) although the GARCH-type models are shown to describe the volatility of streamflow processes and improve the modeling performance, large residuals have been observed in the results of the analysis during the peak flow period; and (c) SV-type models can better describe the streamflow series with time-varying variance and accurately capture the occurrence of peak streamflow. The findings of this study offer practical and promising time series analysis methods for daily streamflow modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明眸完成签到 ,获得积分10
刚刚
1秒前
王手发布了新的文献求助10
2秒前
2秒前
2秒前
烟花应助zzq778采纳,获得10
4秒前
4秒前
欣欣发布了新的文献求助10
4秒前
小欣6116发布了新的文献求助10
5秒前
Jiuhui发布了新的文献求助10
5秒前
御风甜咖啡完成签到,获得积分10
5秒前
uupp完成签到,获得积分10
6秒前
机智雁凡完成签到,获得积分10
7秒前
Cheung2121发布了新的文献求助30
8秒前
9秒前
11秒前
谜记完成签到,获得积分10
11秒前
共享精神应助Cheung2121采纳,获得30
11秒前
光撒盐完成签到,获得积分10
12秒前
cowboy007完成签到,获得积分10
12秒前
张振宇完成签到 ,获得积分10
13秒前
zz发布了新的文献求助10
14秒前
zzq778发布了新的文献求助10
16秒前
黄怡婷完成签到 ,获得积分10
16秒前
Daisy应助科研通管家采纳,获得10
17秒前
机智苗应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
yanmu2010应助科研通管家采纳,获得10
17秒前
kingwill应助科研通管家采纳,获得20
18秒前
银包铜应助科研通管家采纳,获得10
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
18秒前
情怀应助科研通管家采纳,获得10
18秒前
李爱国应助科研通管家采纳,获得10
18秒前
所所应助科研通管家采纳,获得10
18秒前
18秒前
Orange应助科研通管家采纳,获得10
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029