Stochastic Volatility Modeling of Daily Streamflow Time Series

水流 ARCH模型 自回归模型 异方差 波动性(金融) 计量经济学 环境科学 条件方差 数学 统计 流域 地理 地图学
作者
Huimin Wang,Songbai Song,Gengxi Zhang,Olusola O. Ayantobo,Tianli Guo
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (1)
标识
DOI:10.1029/2021wr031662
摘要

Under the changing climate, the natural characteristics of hydrological processes are assumed to have been intensified, and the volatility of these processes to have increased significantly. However, the applicability of traditional time series analysis methods and the commonly used Gaussian GARCH (Generalized AutoRegressive Conditional Heteroskedasticity) to streamflow modeling has been limited. Although SV-type (stochastic volatility) models have appeared as competitive alternatives to GARCH-type models owing to their flexibility in modeling volatilities, they have not been applied in hydrological studies. Therefore, this study assesses the applicability of SV models to streamflow modeling using daily streamflow series from 21 hydrological stations in the Yellow River basin. Considering the influence of different types of GARCH and residual distributions, 7 hybrid models with variance fluctuation (fractional autoregressive integrated moving average-GARCH) based on 9 distributions are compared to determine the optimal model for each station. Then 4 SV-type models are introduced and compared with the results of the optimal GARCH-type model to verify their applicability. The results show that: (a) the Gaussian distribution is not applicable in both GARCH-type and SV-type models for modeling daily streamflow; (b) although the GARCH-type models are shown to describe the volatility of streamflow processes and improve the modeling performance, large residuals have been observed in the results of the analysis during the peak flow period; and (c) SV-type models can better describe the streamflow series with time-varying variance and accurately capture the occurrence of peak streamflow. The findings of this study offer practical and promising time series analysis methods for daily streamflow modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无尽夏发布了新的文献求助10
刚刚
wwmmyy发布了新的文献求助10
1秒前
2秒前
多情的裘发布了新的文献求助30
2秒前
4秒前
TGU2331161488完成签到,获得积分10
4秒前
dahaoren完成签到,获得积分10
4秒前
4秒前
5秒前
雨声完成签到,获得积分10
5秒前
6秒前
lan完成签到,获得积分10
6秒前
糖不甜完成签到,获得积分10
6秒前
I Think发布了新的文献求助10
6秒前
星星发布了新的文献求助20
6秒前
幸运鹅47完成签到,获得积分10
7秒前
扎心发布了新的文献求助10
7秒前
所所应助王心耳采纳,获得10
8秒前
深情安青应助大一泽采纳,获得10
8秒前
嘟噜发布了新的文献求助50
8秒前
8秒前
传奇3应助feifei采纳,获得10
8秒前
yxy303256651发布了新的文献求助10
8秒前
三木完成签到,获得积分10
9秒前
9秒前
gtgyh发布了新的文献求助10
9秒前
haiferse完成签到 ,获得积分10
10秒前
木棉发布了新的文献求助10
10秒前
Lucas应助背水采纳,获得10
10秒前
PPPP完成签到,获得积分10
10秒前
领导范儿应助复杂语山采纳,获得10
10秒前
11秒前
11秒前
下课了吧完成签到,获得积分10
12秒前
HIT_C发布了新的文献求助10
12秒前
传奇3应助Infinit采纳,获得10
13秒前
天宝发布了新的文献求助10
13秒前
14秒前
15秒前
娄复旦发布了新的文献求助10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971754
求助须知:如何正确求助?哪些是违规求助? 3516395
关于积分的说明 11182513
捐赠科研通 3251618
什么是DOI,文献DOI怎么找? 1795980
邀请新用户注册赠送积分活动 876180
科研通“疑难数据库(出版商)”最低求助积分说明 805358