清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Stochastic Volatility Modeling of Daily Streamflow Time Series

水流 ARCH模型 自回归模型 异方差 波动性(金融) 计量经济学 环境科学 条件方差 数学 统计 流域 地理 地图学
作者
Huimin Wang,Songbai Song,Gengxi Zhang,Olusola O. Ayantobo,Tianli Guo
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (1)
标识
DOI:10.1029/2021wr031662
摘要

Under the changing climate, the natural characteristics of hydrological processes are assumed to have been intensified, and the volatility of these processes to have increased significantly. However, the applicability of traditional time series analysis methods and the commonly used Gaussian GARCH (Generalized AutoRegressive Conditional Heteroskedasticity) to streamflow modeling has been limited. Although SV-type (stochastic volatility) models have appeared as competitive alternatives to GARCH-type models owing to their flexibility in modeling volatilities, they have not been applied in hydrological studies. Therefore, this study assesses the applicability of SV models to streamflow modeling using daily streamflow series from 21 hydrological stations in the Yellow River basin. Considering the influence of different types of GARCH and residual distributions, 7 hybrid models with variance fluctuation (fractional autoregressive integrated moving average-GARCH) based on 9 distributions are compared to determine the optimal model for each station. Then 4 SV-type models are introduced and compared with the results of the optimal GARCH-type model to verify their applicability. The results show that: (a) the Gaussian distribution is not applicable in both GARCH-type and SV-type models for modeling daily streamflow; (b) although the GARCH-type models are shown to describe the volatility of streamflow processes and improve the modeling performance, large residuals have been observed in the results of the analysis during the peak flow period; and (c) SV-type models can better describe the streamflow series with time-varying variance and accurately capture the occurrence of peak streamflow. The findings of this study offer practical and promising time series analysis methods for daily streamflow modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
spark810应助科研通管家采纳,获得30
2分钟前
19950220完成签到,获得积分10
2分钟前
应夏山完成签到 ,获得积分10
3分钟前
qcrcherry完成签到,获得积分10
3分钟前
spark810应助科研通管家采纳,获得30
4分钟前
spark810应助科研通管家采纳,获得30
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
al完成签到 ,获得积分10
4分钟前
稻子完成签到 ,获得积分10
5分钟前
Ava应助lovelife采纳,获得10
7分钟前
8分钟前
zhangsan完成签到,获得积分10
8分钟前
侠客完成签到 ,获得积分10
8分钟前
阿木木完成签到,获得积分10
9分钟前
imi完成签到 ,获得积分10
10分钟前
10分钟前
pengpengyin发布了新的文献求助10
10分钟前
lovelife发布了新的文献求助10
10分钟前
pengpengyin完成签到,获得积分10
10分钟前
华仔应助slchein采纳,获得10
10分钟前
CHAI关注了科研通微信公众号
11分钟前
CHAI发布了新的文献求助10
11分钟前
chcmy完成签到 ,获得积分0
11分钟前
lanxinge完成签到 ,获得积分20
12分钟前
研友_nxw2xL完成签到,获得积分10
12分钟前
muriel完成签到,获得积分10
12分钟前
zai完成签到 ,获得积分20
15分钟前
16分钟前
slchein发布了新的文献求助10
16分钟前
17分钟前
slchein完成签到,获得积分10
17分钟前
YUYUYU发布了新的文献求助10
17分钟前
Ava应助hairgod采纳,获得10
18分钟前
18分钟前
胡呵呵发布了新的文献求助10
18分钟前
orixero应助胡呵呵采纳,获得10
18分钟前
英俊的铭应助YUYUYU采纳,获得10
18分钟前
张zhang完成签到 ,获得积分10
20分钟前
方白秋完成签到,获得积分10
21分钟前
21分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154987
求助须知:如何正确求助?哪些是违规求助? 2805698
关于积分的说明 7865856
捐赠科研通 2463969
什么是DOI,文献DOI怎么找? 1311680
科研通“疑难数据库(出版商)”最低求助积分说明 629728
版权声明 601853