Stochastic Volatility Modeling of Daily Streamflow Time Series

水流 ARCH模型 自回归模型 异方差 波动性(金融) 计量经济学 环境科学 条件方差 数学 统计 流域 地理 地图学
作者
Huimin Wang,Songbai Song,Gengxi Zhang,Olusola O. Ayantobo,Tianli Guo
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (1)
标识
DOI:10.1029/2021wr031662
摘要

Under the changing climate, the natural characteristics of hydrological processes are assumed to have been intensified, and the volatility of these processes to have increased significantly. However, the applicability of traditional time series analysis methods and the commonly used Gaussian GARCH (Generalized AutoRegressive Conditional Heteroskedasticity) to streamflow modeling has been limited. Although SV-type (stochastic volatility) models have appeared as competitive alternatives to GARCH-type models owing to their flexibility in modeling volatilities, they have not been applied in hydrological studies. Therefore, this study assesses the applicability of SV models to streamflow modeling using daily streamflow series from 21 hydrological stations in the Yellow River basin. Considering the influence of different types of GARCH and residual distributions, 7 hybrid models with variance fluctuation (fractional autoregressive integrated moving average-GARCH) based on 9 distributions are compared to determine the optimal model for each station. Then 4 SV-type models are introduced and compared with the results of the optimal GARCH-type model to verify their applicability. The results show that: (a) the Gaussian distribution is not applicable in both GARCH-type and SV-type models for modeling daily streamflow; (b) although the GARCH-type models are shown to describe the volatility of streamflow processes and improve the modeling performance, large residuals have been observed in the results of the analysis during the peak flow period; and (c) SV-type models can better describe the streamflow series with time-varying variance and accurately capture the occurrence of peak streamflow. The findings of this study offer practical and promising time series analysis methods for daily streamflow modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
nk完成签到 ,获得积分10
1秒前
kkk完成签到 ,获得积分10
1秒前
韭菜发布了新的文献求助10
1秒前
KSGGS发布了新的文献求助30
2秒前
李爱国应助tanjianxin采纳,获得10
2秒前
2秒前
2秒前
柚子发布了新的文献求助10
3秒前
3秒前
3秒前
SciGPT应助小可采纳,获得10
3秒前
4秒前
4秒前
Akim应助若狂采纳,获得10
4秒前
Owen应助困困咪采纳,获得10
4秒前
4秒前
大雁完成签到 ,获得积分10
5秒前
就这样完成签到 ,获得积分10
5秒前
nn发布了新的文献求助10
5秒前
manan发布了新的文献求助10
5秒前
5秒前
5秒前
落落发布了新的文献求助10
5秒前
ssss完成签到,获得积分10
6秒前
余红发布了新的文献求助10
6秒前
jackcy完成签到 ,获得积分10
6秒前
成都完成签到,获得积分20
6秒前
7秒前
wjh发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
整齐的白筠完成签到,获得积分10
8秒前
WWWUBING完成签到,获得积分10
9秒前
小文发布了新的文献求助10
9秒前
MJQ发布了新的文献求助10
9秒前
9秒前
春夏秋冬发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759