亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Stochastic Volatility Modeling of Daily Streamflow Time Series

水流 ARCH模型 自回归模型 异方差 波动性(金融) 计量经济学 环境科学 条件方差 数学 统计 流域 地理 地图学
作者
Huimin Wang,Songbai Song,Gengxi Zhang,Olusola O. Ayantobo,Tianli Guo
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (1)
标识
DOI:10.1029/2021wr031662
摘要

Under the changing climate, the natural characteristics of hydrological processes are assumed to have been intensified, and the volatility of these processes to have increased significantly. However, the applicability of traditional time series analysis methods and the commonly used Gaussian GARCH (Generalized AutoRegressive Conditional Heteroskedasticity) to streamflow modeling has been limited. Although SV-type (stochastic volatility) models have appeared as competitive alternatives to GARCH-type models owing to their flexibility in modeling volatilities, they have not been applied in hydrological studies. Therefore, this study assesses the applicability of SV models to streamflow modeling using daily streamflow series from 21 hydrological stations in the Yellow River basin. Considering the influence of different types of GARCH and residual distributions, 7 hybrid models with variance fluctuation (fractional autoregressive integrated moving average-GARCH) based on 9 distributions are compared to determine the optimal model for each station. Then 4 SV-type models are introduced and compared with the results of the optimal GARCH-type model to verify their applicability. The results show that: (a) the Gaussian distribution is not applicable in both GARCH-type and SV-type models for modeling daily streamflow; (b) although the GARCH-type models are shown to describe the volatility of streamflow processes and improve the modeling performance, large residuals have been observed in the results of the analysis during the peak flow period; and (c) SV-type models can better describe the streamflow series with time-varying variance and accurately capture the occurrence of peak streamflow. The findings of this study offer practical and promising time series analysis methods for daily streamflow modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iwaking完成签到,获得积分10
3秒前
李爱国应助重要萍采纳,获得10
6秒前
11秒前
Master完成签到,获得积分10
19秒前
20秒前
panpan发布了新的文献求助10
25秒前
31秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
量子星尘发布了新的文献求助10
43秒前
shidandan完成签到 ,获得积分10
43秒前
46秒前
53秒前
panpan关注了科研通微信公众号
57秒前
1分钟前
背后梦安发布了新的文献求助30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
luna完成签到 ,获得积分10
2分钟前
wanci应助li采纳,获得10
2分钟前
追三完成签到 ,获得积分10
2分钟前
小雨发布了新的文献求助100
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
FashionBoy应助科研通管家采纳,获得10
2分钟前
小雨完成签到,获得积分10
2分钟前
2分钟前
li发布了新的文献求助10
2分钟前
3分钟前
星河发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
米粒完成签到,获得积分10
3分钟前
3分钟前
shinian发布了新的文献求助10
3分钟前
xiaobo完成签到 ,获得积分10
4分钟前
4分钟前
赘婿应助科研通管家采纳,获得10
4分钟前
4分钟前
彩色德天发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
orixero应助老实白云采纳,获得10
5分钟前
呆呆的猕猴桃完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976649
求助须知:如何正确求助?哪些是违规求助? 3520749
关于积分的说明 11204708
捐赠科研通 3257497
什么是DOI,文献DOI怎么找? 1798716
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806629