Battery prognostics and health management from a machine learning perspective

预言 灵活性(工程) 电池(电) 人工智能 计算机科学 风险分析(工程) 电气化 机器学习 领域(数学) 工程类 系统工程 工业工程 数据挖掘 功率(物理) 电气工程 物理 统计 纯数学 医学 量子力学 数学
作者
Jingyuan Zhao,Xuning Feng,Quanquan Pang,Junbin Wang,Yubo Lian,Minggao Ouyang,Andrew Burke
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:581: 233474-233474 被引量:58
标识
DOI:10.1016/j.jpowsour.2023.233474
摘要

Transportation electrification is gaining prominence as a significant pathway for reducing emissions and enhancing environmental sustainability. Central to this shift are lithium-ion batteries, which have become the most prevalent energy storage devices. Despite their advantages, the issue of battery degradation during their operational lifetime poses a significant challenge. Progress has been made in modelling and predicting the evolution of nonlinear battery systems using classical physical, electrochemical, first-principle, and atomistic approaches. However, these models are inherently hampered by high computational costs and various sources of uncertainty. Instead of adjusting these classical modelling methods, we argue in this paper for the promising potential of machine learning-based approaches. These approaches allow for the extraction of patterns from inputs and the discovery of complex structures in the target dataset by exploring spatio-temporal features across extensive scales. A significant advancement is the hybrid modelling strategy that merges physical processes with the flexibility offered by deep learning. We present a comprehensive overview of Prognostics and Health Management (PHM) for lithium-ion batteries, with an emphasis on deep neural and kernel-based regression networks. We conclude by offering an outlook on the current limitations, providing a thoughtful analysis of the state of the field and potential future directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
樱花喵发布了新的文献求助30
1秒前
1秒前
怕黑送终发布了新的文献求助10
1秒前
HHD发布了新的文献求助10
2秒前
3秒前
3秒前
煦123给煦123的求助进行了留言
4秒前
cm发布了新的文献求助10
5秒前
guyue发布了新的文献求助10
6秒前
子车茗应助大力世界采纳,获得30
6秒前
禾页完成签到 ,获得积分10
7秒前
8秒前
星辰大海应助薄荷味采纳,获得10
8秒前
GG完成签到,获得积分10
9秒前
9秒前
SunHY发布了新的文献求助10
9秒前
深情安青应助结实惜灵采纳,获得10
10秒前
浮世天堂应助阿牛采纳,获得30
10秒前
俭朴涫发布了新的文献求助20
10秒前
10秒前
11秒前
不配.应助可靠的谷雪采纳,获得10
11秒前
Leif举报C2求助涉嫌违规
11秒前
11秒前
11秒前
11秒前
12秒前
didilvlv发布了新的文献求助10
12秒前
12秒前
充电宝应助健康的秋白采纳,获得10
13秒前
xs应助落寞夏烟采纳,获得10
13秒前
坤坤完成签到,获得积分20
14秒前
欲望被鬼应助spinon采纳,获得10
14秒前
15秒前
Kashing发布了新的文献求助10
15秒前
大个应助温暖的火采纳,获得10
16秒前
Lamis发布了新的文献求助10
16秒前
17秒前
杨树发布了新的文献求助10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514884
求助须知:如何正确求助?哪些是违规求助? 3097246
关于积分的说明 9234750
捐赠科研通 2792216
什么是DOI,文献DOI怎么找? 1532342
邀请新用户注册赠送积分活动 711969
科研通“疑难数据库(出版商)”最低求助积分说明 707062