亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TransFSM: Fetal Anatomy Segmentation and Biometric Measurement in Ultrasound Images Using a Hybrid Transformer

生物识别 人工智能 计算机科学 分割 计算机视觉 模式识别(心理学) 图像分割 特征提取
作者
Lei Zhao,Guanghua Tan,Bin Pu,Qianghui Wu,Hongliang Ren,Kenli Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 285-296 被引量:12
标识
DOI:10.1109/jbhi.2023.3328954
摘要

Biometric parameter measurements are powerful tools for evaluating a fetus's gestational age, growth pattern, and abnormalities in a 2D ultrasound. However, it is still challenging to measure fetal biometric parameters automatically due to the indiscriminate confusing factors, limited foreground-background contrast, variety of fetal anatomy shapes at different gestational ages, and blurry anatomical boundaries in ultrasound images. The performance of a standard CNN architecture is limited for these tasks due to the restricted receptive field. We propose a novel hybrid Transformer framework, TransFSM, to address fetal multi-anatomy segmentation and biometric measurement tasks. Unlike the vanilla Transformer based on a single-scale input, TransFSM has a deformable self-attention mechanism so it can effectively process multi-scale information to segment fetal anatomy with irregular shapes and different sizes. We devised a BAD to capture more intrinsic local details using boundary-wise prior knowledge, which compensates for the defects of the Transformer in extracting local features. In addition, a Transformer auxiliary segment head is designed to improve mask prediction by learning the semantic correspondence of the same pixel categories and feature discriminability among different pixel categories. Extensive experiments were conducted on clinical cases and benchmark datasets for anatomy segmentation and biometric measurement tasks. The experiment results indicate that our method achieves state-of-the-art performance in seven evaluation metrics compared with CNN-based, Transformer-based, and hybrid approaches. By Knowledge distillation, the proposed TransFSM can create a more compact and efficient model with high deploying potential in resource-constrained scenarios. Our study serves as a unified framework for biometric estimation across multiple anatomical regions to monitor fetal growth in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天大青年发布了新的文献求助10
2秒前
爆米花应助天大青年采纳,获得10
13秒前
16秒前
叉叉仔啊完成签到,获得积分10
16秒前
Stella发布了新的文献求助10
21秒前
Lucas应助娜娜采纳,获得10
29秒前
Stella完成签到,获得积分20
39秒前
虚心怜阳完成签到 ,获得积分10
40秒前
41秒前
43秒前
娜娜发布了新的文献求助10
48秒前
51秒前
nana2hao发布了新的文献求助20
51秒前
耍酷的飞凤完成签到,获得积分10
53秒前
54秒前
KSung完成签到 ,获得积分10
58秒前
1分钟前
田柾国完成签到,获得积分20
1分钟前
HudaBala完成签到,获得积分10
1分钟前
1分钟前
Levent完成签到 ,获得积分10
2分钟前
CipherSage应助wangyue采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
天大青年发布了新的文献求助10
2分钟前
2分钟前
清爽夜雪完成签到,获得积分10
2分钟前
充电宝应助天大青年采纳,获得10
2分钟前
Petrichor完成签到 ,获得积分10
2分钟前
33发布了新的文献求助30
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
2分钟前
月军完成签到,获得积分10
2分钟前
沃兹姬完成签到 ,获得积分10
2分钟前
葛觅荷完成签到,获得积分10
2分钟前
桐桐应助33采纳,获得10
3分钟前
nana2hao完成签到,获得积分10
3分钟前
研友_ZAxX6n完成签到 ,获得积分10
3分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150492
求助须知:如何正确求助?哪些是违规求助? 2801881
关于积分的说明 7845881
捐赠科研通 2459245
什么是DOI,文献DOI怎么找? 1309130
科研通“疑难数据库(出版商)”最低求助积分说明 628656
版权声明 601727