TransFSM: Fetal Anatomy Segmentation and Biometric Measurement in Ultrasound Images Using a Hybrid Transformer

生物识别 人工智能 计算机科学 分割 计算机视觉 模式识别(心理学) 图像分割 特征提取
作者
Lei Zhao,Guanghua Tan,Bin Pu,Qianghui Wu,Hongliang Ren,Kenli Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 285-296 被引量:16
标识
DOI:10.1109/jbhi.2023.3328954
摘要

Biometric parameter measurements are powerful tools for evaluating a fetus's gestational age, growth pattern, and abnormalities in a 2D ultrasound. However, it is still challenging to measure fetal biometric parameters automatically due to the indiscriminate confusing factors, limited foreground-background contrast, variety of fetal anatomy shapes at different gestational ages, and blurry anatomical boundaries in ultrasound images. The performance of a standard CNN architecture is limited for these tasks due to the restricted receptive field. We propose a novel hybrid Transformer framework, TransFSM, to address fetal multi-anatomy segmentation and biometric measurement tasks. Unlike the vanilla Transformer based on a single-scale input, TransFSM has a deformable self-attention mechanism so it can effectively process multi-scale information to segment fetal anatomy with irregular shapes and different sizes. We devised a BAD to capture more intrinsic local details using boundary-wise prior knowledge, which compensates for the defects of the Transformer in extracting local features. In addition, a Transformer auxiliary segment head is designed to improve mask prediction by learning the semantic correspondence of the same pixel categories and feature discriminability among different pixel categories. Extensive experiments were conducted on clinical cases and benchmark datasets for anatomy segmentation and biometric measurement tasks. The experiment results indicate that our method achieves state-of-the-art performance in seven evaluation metrics compared with CNN-based, Transformer-based, and hybrid approaches. By Knowledge distillation, the proposed TransFSM can create a more compact and efficient model with high deploying potential in resource-constrained scenarios. Our study serves as a unified framework for biometric estimation across multiple anatomical regions to monitor fetal growth in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Messi完成签到,获得积分10
1秒前
1秒前
希达完成签到,获得积分10
2秒前
十三应助Y0Y0采纳,获得10
3秒前
麦麦发布了新的文献求助10
3秒前
ydby27发布了新的文献求助10
4秒前
qiang发布了新的文献求助10
5秒前
MyMuses发布了新的文献求助10
6秒前
6秒前
碧蓝的凝竹完成签到,获得积分10
7秒前
整齐荟完成签到,获得积分10
8秒前
9秒前
猪猪hero发布了新的文献求助10
9秒前
可爱的函函应助单纯面包采纳,获得10
10秒前
10秒前
12秒前
lxt819完成签到,获得积分10
14秒前
博修发布了新的文献求助10
14秒前
黄玉珠发布了新的文献求助10
15秒前
17秒前
Xu发布了新的文献求助10
17秒前
quora完成签到,获得积分10
17秒前
Orange应助ji采纳,获得10
17秒前
李爱国应助十一苗采纳,获得10
18秒前
18秒前
李健应助shinn采纳,获得10
19秒前
20秒前
slj发布了新的文献求助10
21秒前
王一一发布了新的文献求助10
21秒前
xuaotian完成签到,获得积分10
22秒前
李兴完成签到 ,获得积分10
22秒前
kira发布了新的文献求助10
25秒前
辣辣发布了新的文献求助10
25秒前
kiki完成签到,获得积分10
26秒前
家欣完成签到 ,获得积分10
26秒前
26秒前
Xu完成签到,获得积分20
26秒前
风趣姿完成签到 ,获得积分10
27秒前
早睡早起身体好完成签到,获得积分10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967722
求助须知:如何正确求助?哪些是违规求助? 3512889
关于积分的说明 11165380
捐赠科研通 3247919
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874836
科研通“疑难数据库(出版商)”最低求助积分说明 804578