Quantitative characterization of organic and inorganic pores in shale based on deep learning

表征(材料科学) 油页岩 材料科学 地质学 石油工程 矿物学 地球化学 化学工程 纳米技术 工程类 古生物学
作者
Bohong Yan,Langqiu Sun,Jianguo Zhao,Zixiong Cao,Mingxuan Li,K. C. Shiba,Xinze Liu,Chuang Li
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (2): MR63-MR76
标识
DOI:10.1190/geo2023-0352.1
摘要

Organic matter (OM) maturity is closely related to organic pores in shales. Quantitative characterization of organic and inorganic pores in shale is crucial for rock-physics modeling and reservoir porosity and permeability evaluation. Focused ion beam-scanning electron microscopy (FIB-SEM) can capture high-precision three-dimensional (3D) images and directly describe the types, shapes, and spatial distribution of pores in shale gas reservoirs. However, due to the high scanning cost, wide 3D view field, and complex microstructure of FIB-SEM, more efficient segmentation for the FIB-SEM images is required. For this purpose, a multiphase segmentation workflow in conjunction with a U-net is developed to segment pores from the matrix and distinguish organic pores from inorganic pores simultaneously in the entire 3D image stack. The workflow is repeated for FIB-SEM data sets of 17 organic-rich shales with various characteristics. The analysis focuses on improving the efficiency and relevance of the workflow, that is, quantifying the minimum number of training slices while ensuring accuracy and further combining the fractal dimension (FD) and lacunarity to study a simple and objective method of selection. Meanwhile, the computational efficiency, accuracy, and robustness to noise of the 2D U-net model are discussed. The intersection over the union of automatic segmentation can amount to 80%–95% in all data sets with manual labels as ground truth. In addition, calculated by the FIB-SEM multiphase segmentation, the organic porosity is used to quantitatively evaluate the OM decomposition level. Deep-learning-based segmentation shows great potential for characterizing shale pore structures and quantifying OM maturity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
情怀应助cc20231022采纳,获得10
2秒前
宇袖完成签到 ,获得积分10
2秒前
Jack发布了新的文献求助10
3秒前
4秒前
ff发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
6秒前
7秒前
8秒前
满满啊发布了新的文献求助10
11秒前
11秒前
木木川发布了新的文献求助10
12秒前
传奇3应助激昂的冰海采纳,获得10
12秒前
qwt完成签到,获得积分10
12秒前
刘晓楠完成签到 ,获得积分10
13秒前
科研通AI2S应助哭泣的铅笔采纳,获得10
15秒前
15秒前
辣条大王关注了科研通微信公众号
15秒前
炒面完成签到,获得积分10
15秒前
我的娃完成签到,获得积分10
16秒前
booooo发布了新的文献求助10
16秒前
16秒前
QQ完成签到,获得积分10
16秒前
17秒前
赘婿应助yixiaolou采纳,获得10
17秒前
Jack完成签到,获得积分10
19秒前
19秒前
科研狗宁完成签到,获得积分10
19秒前
叮叮叮发布了新的文献求助10
21秒前
Liexinun关注了科研通微信公众号
21秒前
小菜完成签到 ,获得积分10
22秒前
22秒前
体贴薯片完成签到,获得积分10
23秒前
wp4455777发布了新的文献求助10
24秒前
25秒前
科研通AI2S应助小爽采纳,获得10
26秒前
26秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129605
求助须知:如何正确求助?哪些是违规求助? 2780380
关于积分的说明 7747647
捐赠科研通 2435666
什么是DOI,文献DOI怎么找? 1294216
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570