亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quantitative characterization of organic and inorganic pores in shale based on deep learning

表征(材料科学) 油页岩 材料科学 地质学 石油工程 矿物学 地球化学 化学工程 纳米技术 工程类 古生物学
作者
Bohong Yan,Langqiu Sun,Jianguo Zhao,Zixiong Cao,Mingxuan Li,K. C. Shiba,Xinze Liu,Chuang Li
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (2): MR63-MR76
标识
DOI:10.1190/geo2023-0352.1
摘要

Organic matter (OM) maturity is closely related to organic pores in shales. Quantitative characterization of organic and inorganic pores in shale is crucial for rock-physics modeling and reservoir porosity and permeability evaluation. Focused ion beam-scanning electron microscopy (FIB-SEM) can capture high-precision three-dimensional (3D) images and directly describe the types, shapes, and spatial distribution of pores in shale gas reservoirs. However, due to the high scanning cost, wide 3D view field, and complex microstructure of FIB-SEM, more efficient segmentation for the FIB-SEM images is required. For this purpose, a multiphase segmentation workflow in conjunction with a U-net is developed to segment pores from the matrix and distinguish organic pores from inorganic pores simultaneously in the entire 3D image stack. The workflow is repeated for FIB-SEM data sets of 17 organic-rich shales with various characteristics. The analysis focuses on improving the efficiency and relevance of the workflow, that is, quantifying the minimum number of training slices while ensuring accuracy and further combining the fractal dimension (FD) and lacunarity to study a simple and objective method of selection. Meanwhile, the computational efficiency, accuracy, and robustness to noise of the 2D U-net model are discussed. The intersection over the union of automatic segmentation can amount to 80%–95% in all data sets with manual labels as ground truth. In addition, calculated by the FIB-SEM multiphase segmentation, the organic porosity is used to quantitatively evaluate the OM decomposition level. Deep-learning-based segmentation shows great potential for characterizing shale pore structures and quantifying OM maturity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Duan完成签到 ,获得积分10
1秒前
4秒前
ho应助科研通管家采纳,获得10
10秒前
21秒前
明天更好完成签到 ,获得积分10
22秒前
23秒前
25秒前
壮观的海豚完成签到 ,获得积分10
29秒前
kentonchow应助妄想天使采纳,获得10
31秒前
意已发布了新的文献求助10
32秒前
意已完成签到,获得积分10
39秒前
39秒前
39秒前
40秒前
44秒前
Noob_saibot完成签到,获得积分10
48秒前
叛逆黑洞完成签到 ,获得积分10
51秒前
坚定汝燕发布了新的文献求助10
58秒前
1分钟前
Yiphy发布了新的文献求助50
1分钟前
kyokyoro完成签到,获得积分10
1分钟前
1分钟前
JazzWon完成签到,获得积分10
1分钟前
1分钟前
卡皮巴拉发布了新的文献求助10
1分钟前
1分钟前
1分钟前
叛逆黑洞发布了新的文献求助30
1分钟前
yang1111完成签到 ,获得积分10
1分钟前
在水一方应助林新宇采纳,获得10
1分钟前
1分钟前
1分钟前
小蘑菇应助卡皮巴拉采纳,获得10
1分钟前
林新宇完成签到,获得积分20
1分钟前
w_tiger完成签到 ,获得积分10
1分钟前
林新宇发布了新的文献求助10
1分钟前
kentonchow应助妄想天使采纳,获得50
1分钟前
Vaseegara完成签到 ,获得积分10
2分钟前
斯文败类应助地蛋采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376343
求助须知:如何正确求助?哪些是违规求助? 4501460
关于积分的说明 14013061
捐赠科研通 4409230
什么是DOI,文献DOI怎么找? 2422111
邀请新用户注册赠送积分活动 1414926
关于科研通互助平台的介绍 1391787