Quantitative characterization of organic and inorganic pores in shale based on deep learning

表征(材料科学) 油页岩 材料科学 地质学 石油工程 矿物学 地球化学 化学工程 纳米技术 工程类 古生物学
作者
Bohong Yan,Langqiu Sun,Jianguo Zhao,Zixiong Cao,Mingxuan Li,K. C. Shiba,Xinze Liu,Chuang Li
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (2): MR63-MR76
标识
DOI:10.1190/geo2023-0352.1
摘要

Organic matter (OM) maturity is closely related to organic pores in shales. Quantitative characterization of organic and inorganic pores in shale is crucial for rock-physics modeling and reservoir porosity and permeability evaluation. Focused ion beam-scanning electron microscopy (FIB-SEM) can capture high-precision three-dimensional (3D) images and directly describe the types, shapes, and spatial distribution of pores in shale gas reservoirs. However, due to the high scanning cost, wide 3D view field, and complex microstructure of FIB-SEM, more efficient segmentation for the FIB-SEM images is required. For this purpose, a multiphase segmentation workflow in conjunction with a U-net is developed to segment pores from the matrix and distinguish organic pores from inorganic pores simultaneously in the entire 3D image stack. The workflow is repeated for FIB-SEM data sets of 17 organic-rich shales with various characteristics. The analysis focuses on improving the efficiency and relevance of the workflow, that is, quantifying the minimum number of training slices while ensuring accuracy and further combining the fractal dimension (FD) and lacunarity to study a simple and objective method of selection. Meanwhile, the computational efficiency, accuracy, and robustness to noise of the 2D U-net model are discussed. The intersection over the union of automatic segmentation can amount to 80%–95% in all data sets with manual labels as ground truth. In addition, calculated by the FIB-SEM multiphase segmentation, the organic porosity is used to quantitatively evaluate the OM decomposition level. Deep-learning-based segmentation shows great potential for characterizing shale pore structures and quantifying OM maturity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
行则将至完成签到,获得积分10
刚刚
刚刚
麦客发布了新的文献求助10
刚刚
Stella应助寻光人采纳,获得10
刚刚
小透明发布了新的文献求助50
1秒前
dadas565发布了新的文献求助10
1秒前
stresm完成签到,获得积分10
1秒前
qishui完成签到 ,获得积分10
3秒前
雪莉发布了新的文献求助50
3秒前
执着怜珊完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
4秒前
贺贺发布了新的文献求助10
4秒前
5秒前
高贵白凝完成签到,获得积分10
6秒前
南山发布了新的文献求助10
7秒前
7秒前
行则将至发布了新的文献求助20
7秒前
鱼鱼鱼鱼鱼完成签到 ,获得积分10
8秒前
QQRWBY发布了新的文献求助10
8秒前
8秒前
8秒前
zkk发布了新的文献求助20
9秒前
又胖了发布了新的文献求助10
9秒前
Hello应助吉里吉利采纳,获得10
11秒前
英俊的铭应助奋斗的荆采纳,获得10
11秒前
Hello应助Rui豆豆采纳,获得10
11秒前
受伤访波完成签到,获得积分10
11秒前
CodeCraft应助飘逸问薇采纳,获得10
11秒前
朱加凤完成签到,获得积分10
11秒前
12秒前
量子星尘发布了新的文献求助20
12秒前
隐形曼青应助意识难防滑采纳,获得10
12秒前
搜集达人应助贺贺采纳,获得10
12秒前
惊蛰发布了新的文献求助30
12秒前
12秒前
阳光彩虹小白马完成签到,获得积分10
13秒前
13秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586202
求助须知:如何正确求助?哪些是违规求助? 4669536
关于积分的说明 14778743
捐赠科研通 4619127
什么是DOI,文献DOI怎么找? 2530801
邀请新用户注册赠送积分活动 1499593
关于科研通互助平台的介绍 1467788