Quantitative characterization of organic and inorganic pores in shale based on deep learning

表征(材料科学) 油页岩 材料科学 地质学 石油工程 矿物学 地球化学 化学工程 纳米技术 工程类 古生物学
作者
Bohong Yan,Langqiu Sun,Jianguo Zhao,Zixiong Cao,Mingxuan Li,K. C. Shiba,Xinze Liu,Chuang Li
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (2): MR63-MR76
标识
DOI:10.1190/geo2023-0352.1
摘要

Organic matter (OM) maturity is closely related to organic pores in shales. Quantitative characterization of organic and inorganic pores in shale is crucial for rock-physics modeling and reservoir porosity and permeability evaluation. Focused ion beam-scanning electron microscopy (FIB-SEM) can capture high-precision three-dimensional (3D) images and directly describe the types, shapes, and spatial distribution of pores in shale gas reservoirs. However, due to the high scanning cost, wide 3D view field, and complex microstructure of FIB-SEM, more efficient segmentation for the FIB-SEM images is required. For this purpose, a multiphase segmentation workflow in conjunction with a U-net is developed to segment pores from the matrix and distinguish organic pores from inorganic pores simultaneously in the entire 3D image stack. The workflow is repeated for FIB-SEM data sets of 17 organic-rich shales with various characteristics. The analysis focuses on improving the efficiency and relevance of the workflow, that is, quantifying the minimum number of training slices while ensuring accuracy and further combining the fractal dimension (FD) and lacunarity to study a simple and objective method of selection. Meanwhile, the computational efficiency, accuracy, and robustness to noise of the 2D U-net model are discussed. The intersection over the union of automatic segmentation can amount to 80%–95% in all data sets with manual labels as ground truth. In addition, calculated by the FIB-SEM multiphase segmentation, the organic porosity is used to quantitatively evaluate the OM decomposition level. Deep-learning-based segmentation shows great potential for characterizing shale pore structures and quantifying OM maturity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
悦悦发布了新的文献求助10
1秒前
1秒前
1秒前
武坤发布了新的文献求助10
2秒前
SciGPT应助坚定小熊猫采纳,获得10
2秒前
3秒前
4秒前
5秒前
小马甲应助康康采纳,获得10
6秒前
6秒前
1043681559完成签到,获得积分10
6秒前
liu123发布了新的文献求助10
7秒前
ALEX发布了新的文献求助10
8秒前
Aventen完成签到,获得积分10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
9秒前
今后应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
9秒前
10秒前
10秒前
英姑应助科研通管家采纳,获得10
10秒前
ll应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
LHTTT发布了新的文献求助10
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
obaica完成签到,获得积分10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967544
求助须知:如何正确求助?哪些是违规求助? 3512763
关于积分的说明 11165008
捐赠科研通 3247759
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528