亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning-based identification of determinants for rehabilitation success and future healthcare use prevention in patients with high-grade, chronic, nonspecific low back pain: an individual data 7-year follow-up analysis on 154,167 individuals

康复 医学 医疗保健 物理疗法 物理医学与康复 经济增长 经济
作者
Daniel Niederer,Joerg Schiller,David A. Groneberg,Michael Behringer,Bernd Wolfarth,Lars Gabrys
出处
期刊:Pain [Ovid Technologies (Wolters Kluwer)]
被引量:3
标识
DOI:10.1097/j.pain.0000000000003087
摘要

To individually prescribe rehabilitation contents, it is of importance to know and quantify factors for rehabilitation success and the risk for a future healthcare use. The objective of our multivariable prediction model was to determine factors of rehabilitation success and the risk for a future healthcare use in patients with high-grade, chronic low back pain. We included members of the German pension fund who participated from 2012 to 2019 in multimodal medical rehabilitation with physical and psychological treatment strategies because of low back pain (ICD10:M54.5). Candidate prognostic factors for rehabilitation success and for a future healthcare use were identified using Gradient Boosting Machines and Random Forest algorithms in the R-package caret on a 70% training and a 30% test set. We analysed data from 154,167 patients; 8015 with a second medical rehabilitation measure and 5161 who retired because of low back pain within the study period. The root-mean-square errors ranged between 494 (recurrent rehabilitation) and 523 (retirement) days ( R2 = 0.183-0.229), whereas the prediction accuracy ranged between 81.9% for the prediction of the rehabilitation outcome, and 94.8% for the future healthcare use prediction model. Many modifiable prognostic factors (such as duration of the rehabilitation [inverted u-shaped], type of the rehabilitation, and aftercare measure), nonmodifiable prognostic factors (such as sex and age), and disease-specific factors (such as sick leave days before the rehabilitation [linear positive] together with the pain grades) for rehabilitation success were identified. Inpatient medical rehabilitation programmes (3 weeks) may be more effective in preventing a second rehabilitation measure and/or early retirement because of low back pain compared with outpatient rehabilitation programs. Subsequent implementation of additional exercise programmes, cognitive behavioural aftercare treatment, and following scheduled aftercare are likely to be beneficial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
拓跋雨梅完成签到 ,获得积分0
16秒前
mjf111应助DrleedsG采纳,获得10
29秒前
34秒前
bkagyin应助科研通管家采纳,获得10
34秒前
48秒前
1分钟前
1分钟前
Lily完成签到,获得积分10
2分钟前
clairevox完成签到,获得积分10
2分钟前
2分钟前
clairevox发布了新的文献求助10
2分钟前
2分钟前
勤恳依霜发布了新的文献求助10
2分钟前
jfc完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
传奇3应助XIN采纳,获得10
4分钟前
4分钟前
4分钟前
XIN发布了新的文献求助10
4分钟前
mjf111发布了新的文献求助10
5分钟前
mjf111完成签到,获得积分10
5分钟前
5分钟前
xz完成签到 ,获得积分10
5分钟前
XIN发布了新的文献求助10
5分钟前
XIN完成签到,获得积分10
5分钟前
6分钟前
qiuxuan100发布了新的文献求助10
6分钟前
8分钟前
8分钟前
ding应助科研通管家采纳,获得10
8分钟前
8分钟前
8分钟前
Lucas应助强健的柚子采纳,获得10
8分钟前
9分钟前
9分钟前
10分钟前
大脸猫完成签到 ,获得积分10
10分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303289
求助须知:如何正确求助?哪些是违规求助? 2937611
关于积分的说明 8482551
捐赠科研通 2611482
什么是DOI,文献DOI怎么找? 1425949
科研通“疑难数据库(出版商)”最低求助积分说明 662474
邀请新用户注册赠送积分活动 647005