Artificial intelligence in osteoarthritis detection: A systematic review and meta-analysis

荟萃分析 列联表 置信区间 医学 人工智能 骨关节炎 机器学习 统计 数据挖掘 内科学 计算机科学 数学 病理 替代医学
作者
Soheil Mohammadi,Mohammad Amin Salehi,Ali Jahanshahi,Mohammad Shahrabi Farahani,Seyed Sina Zakavi,Sadra Behrouzieh,Mahdi Gouravani,Ali Guermazi
出处
期刊:Osteoarthritis and Cartilage [Elsevier]
卷期号:32 (3): 241-253 被引量:6
标识
DOI:10.1016/j.joca.2023.09.011
摘要

Objectives As an increasing number of studies apply artificial intelligence (AI) algorithms in osteoarthritis (OA) detection, we performed a systematic review and meta-analysis to pool the data on diagnostic performance metrics of AI, and to compare them with clinicians' performance. Materials and methods A search in PubMed and Scopus was performed to find studies published up to April 2022 that evaluated and/or validated an AI algorithm for the detection or classification of OA. We performed a meta-analysis to pool the data on the metrics of diagnostic performance. Subgroup analysis based on the involved joint and meta-regression based on multiple parameters were performed to find potential sources of heterogeneity. The risk of bias was assessed using Prediction Model Study Risk of Bias Assessment Tool reporting guidelines. Results Of the 61 studies included, 27 studies with 91 contingency tables provided sufficient data to enter the meta-analysis. The pooled sensitivities for AI algorithms and clinicians on internal validation test sets were 88% (95% confidence interval [CI]: 86,91) and 80% (95% CI: 68,88) and pooled specificities were 81% (95% CI: 75,85) and 79% (95% CI: 80,85), respectively. At external validation, the pooled sensitivity and specificity for AI algorithms were 94% (95% CI: 90,97) and 91% (95% CI: 77,97), respectively. Conclusion Although the results of this meta-analysis should be interpreted with caution due to the potential pitfalls in the included studies, the promising role of AI as a diagnostic adjunct to radiologists is indisputable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_p完成签到,获得积分10
刚刚
刚刚
刚刚
Sunny完成签到 ,获得积分10
1秒前
1秒前
大胆的翠绿完成签到,获得积分10
1秒前
NexusExplorer应助完美诺言采纳,获得10
1秒前
叶白山完成签到,获得积分10
1秒前
xcsasada完成签到,获得积分10
1秒前
2秒前
2秒前
su完成签到,获得积分20
3秒前
4秒前
叶白山发布了新的文献求助10
5秒前
5秒前
holo完成签到,获得积分10
5秒前
6秒前
6秒前
水草帽完成签到 ,获得积分10
6秒前
ercong_604发布了新的文献求助50
7秒前
pi发布了新的文献求助10
7秒前
Lmy发布了新的文献求助10
8秒前
安益平完成签到,获得积分10
8秒前
小鲸鱼完成签到,获得积分10
8秒前
bind发布了新的文献求助10
8秒前
su发布了新的文献求助10
8秒前
XinyiZhang完成签到,获得积分10
9秒前
chen完成签到,获得积分10
9秒前
Lemon完成签到,获得积分10
10秒前
sfxnxgu完成签到,获得积分20
11秒前
Cruffin完成签到 ,获得积分10
11秒前
嘎嘎完成签到,获得积分10
11秒前
Bressanone完成签到,获得积分10
11秒前
爱听歌的栾完成签到,获得积分10
11秒前
11秒前
12秒前
蛮吉完成签到 ,获得积分10
12秒前
怡然飞薇完成签到,获得积分10
12秒前
pi完成签到,获得积分10
13秒前
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147236
求助须知:如何正确求助?哪些是违规求助? 2798534
关于积分的说明 7829576
捐赠科研通 2455246
什么是DOI,文献DOI怎么找? 1306655
科研通“疑难数据库(出版商)”最低求助积分说明 627883
版权声明 601567