Artificial intelligence in osteoarthritis detection: A systematic review and meta-analysis

荟萃分析 列联表 置信区间 医学 人工智能 骨关节炎 机器学习 统计 数据挖掘 内科学 计算机科学 数学 病理 替代医学
作者
Soheil Mohammadi,Mohammad Amin Salehi,Ali Jahanshahi,Mohammad Shahrabi Farahani,Seyed Sina Zakavi,Sadra Behrouzieh,Mahdi Gouravani,Ali Guermazi
出处
期刊:Osteoarthritis and Cartilage [Elsevier BV]
卷期号:32 (3): 241-253 被引量:8
标识
DOI:10.1016/j.joca.2023.09.011
摘要

Objectives As an increasing number of studies apply artificial intelligence (AI) algorithms in osteoarthritis (OA) detection, we performed a systematic review and meta-analysis to pool the data on diagnostic performance metrics of AI, and to compare them with clinicians' performance. Materials and methods A search in PubMed and Scopus was performed to find studies published up to April 2022 that evaluated and/or validated an AI algorithm for the detection or classification of OA. We performed a meta-analysis to pool the data on the metrics of diagnostic performance. Subgroup analysis based on the involved joint and meta-regression based on multiple parameters were performed to find potential sources of heterogeneity. The risk of bias was assessed using Prediction Model Study Risk of Bias Assessment Tool reporting guidelines. Results Of the 61 studies included, 27 studies with 91 contingency tables provided sufficient data to enter the meta-analysis. The pooled sensitivities for AI algorithms and clinicians on internal validation test sets were 88% (95% confidence interval [CI]: 86,91) and 80% (95% CI: 68,88) and pooled specificities were 81% (95% CI: 75,85) and 79% (95% CI: 80,85), respectively. At external validation, the pooled sensitivity and specificity for AI algorithms were 94% (95% CI: 90,97) and 91% (95% CI: 77,97), respectively. Conclusion Although the results of this meta-analysis should be interpreted with caution due to the potential pitfalls in the included studies, the promising role of AI as a diagnostic adjunct to radiologists is indisputable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待的剑身完成签到,获得积分10
刚刚
2秒前
健忘曼彤发布了新的文献求助10
3秒前
幸运星完成签到 ,获得积分10
3秒前
机灵白桃发布了新的文献求助10
3秒前
4秒前
无情的匪发布了新的文献求助10
5秒前
马康辉应助Han采纳,获得10
5秒前
lichaoyes完成签到,获得积分10
6秒前
8秒前
8秒前
张姐发布了新的文献求助10
8秒前
Zhwngyouwei完成签到,获得积分10
8秒前
凡迪亚比应助薛人英采纳,获得30
9秒前
韩文强完成签到,获得积分20
9秒前
无花果应助111采纳,获得10
10秒前
xixi应助健忘曼彤采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
Mi完成签到 ,获得积分10
12秒前
韩文强发布了新的文献求助10
12秒前
ZZ发布了新的文献求助10
14秒前
NikiJu发布了新的文献求助30
15秒前
时尚的细菌完成签到,获得积分10
15秒前
健忘曼彤完成签到,获得积分10
16秒前
orixero应助张姐采纳,获得10
17秒前
英姑应助飞快的笑容采纳,获得10
18秒前
18秒前
19秒前
不摇碧莲完成签到 ,获得积分10
20秒前
SYLH应助niuma采纳,获得20
21秒前
田様应助Zhwngyouwei采纳,获得10
21秒前
22秒前
田様应助DZ采纳,获得10
22秒前
23秒前
小杨发布了新的文献求助10
23秒前
pride完成签到,获得积分0
24秒前
Stars发布了新的文献求助10
24秒前
25秒前
26秒前
深情安青应助机灵白桃采纳,获得10
26秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979791
求助须知:如何正确求助?哪些是违规求助? 3523813
关于积分的说明 11219007
捐赠科研通 3261341
什么是DOI,文献DOI怎么找? 1800573
邀请新用户注册赠送积分活动 879179
科研通“疑难数据库(出版商)”最低求助积分说明 807193