Physics-Guided Deep Learning for Prediction of Energy Production from Geothermal Reservoirs

利用 深度学习 人工智能 人工神经网络 计算机科学 机器学习 地温梯度 计算 数据驱动 领域(数学) 循环神经网络 物理 地球物理学 算法 计算机安全 数学 纯数学
作者
Zhen Qin,Anyue Jiang,Dave Faulder,Trenton T. Cladouhos,Behnam Jafarpour
出处
期刊:Geothermics [Elsevier]
卷期号:116: 102824-102824 被引量:21
标识
DOI:10.1016/j.geothermics.2023.102824
摘要

Predictive models are traditionally used for the development and management of geothermal reservoirs. While field operation optimization based on physics-based simulations offers dependable strategies, simulation models require detailed descriptions of reservoir conditions and properties and entail extensive computational efforts. As efficient alternatives to traditional physics-based simulation, data-driven predictive models such as deep learning-based models can provide fast predictions to facilitate complex iterative tasks that otherwise entail high computation time. However, purely data-driven models that are trained using limited data often provide physically inconsistent predictions and fail to generalize beyond the training data. This has important consequences in optimization applications where, during optimization, the well control strategies are likely to fall beyond the training data. These limitations undermine the suitability and strength of data-driven models in scientific and engineering applications, where the amount of data is typically limited but physical laws are well-established and frequently used. To address the above challenges, we propose a novel physics-guided machine learning model by incorporating the general structure of the physics-based equations into deep learning models. A typical approach for incorporating physics is adding physics-based constraints in the loss function to regularize the trainable parameters. However, this approach does not exploit or adapt the architecture of the neural network. In this work, the architecture of the proposed recurrent neural networks (RNN) is designed to represent the differential equations of the subsurface flow system. We present the physics-guided RNN models in detail and demonstrate their connection to the underlying differential equations describing the fluid flow physics. We investigate the prediction performance of the proposed models by first applying them to controlled example to evaluate their extrapolation power, before using them with simulated and field datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
白羊给白羊的求助进行了留言
1秒前
1秒前
陌回完成签到,获得积分10
2秒前
鲤鱼灵波发布了新的文献求助10
2秒前
allen发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
5秒前
7秒前
9秒前
漂亮糖豆发布了新的文献求助10
10秒前
11秒前
11秒前
直率的珍完成签到,获得积分10
11秒前
隐形曼青应助燕儿采纳,获得10
12秒前
12秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
小青椒应助allen采纳,获得30
15秒前
甜甜的平蓝完成签到 ,获得积分10
15秒前
15秒前
16秒前
沐晴发布了新的文献求助10
17秒前
17秒前
陈秋妮发布了新的文献求助10
18秒前
鱼包包发布了新的文献求助10
18秒前
sunny完成签到,获得积分10
18秒前
华仔应助sy采纳,获得10
19秒前
12发布了新的文献求助10
19秒前
19秒前
YYR发布了新的文献求助10
19秒前
隐形曼青应助milos采纳,获得10
20秒前
20秒前
張肉肉发布了新的文献求助10
21秒前
Yallabo发布了新的文献求助200
22秒前
qwertyu111发布了新的文献求助10
22秒前
ethanxiang发布了新的文献求助20
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469534
求助须知:如何正确求助?哪些是违规求助? 4572619
关于积分的说明 14336346
捐赠科研通 4499426
什么是DOI,文献DOI怎么找? 2465098
邀请新用户注册赠送积分活动 1453599
关于科研通互助平台的介绍 1428091