Physics-Guided Deep Learning for Prediction of Energy Production from Geothermal Reservoirs

利用 深度学习 人工智能 人工神经网络 计算机科学 机器学习 地温梯度 计算 数据驱动 领域(数学) 循环神经网络 物理 地球物理学 算法 计算机安全 数学 纯数学
作者
Zhen Qin,Anyue Jiang,Dave Faulder,Trenton T. Cladouhos,Behnam Jafarpour
出处
期刊:Geothermics [Elsevier]
卷期号:116: 102824-102824 被引量:21
标识
DOI:10.1016/j.geothermics.2023.102824
摘要

Predictive models are traditionally used for the development and management of geothermal reservoirs. While field operation optimization based on physics-based simulations offers dependable strategies, simulation models require detailed descriptions of reservoir conditions and properties and entail extensive computational efforts. As efficient alternatives to traditional physics-based simulation, data-driven predictive models such as deep learning-based models can provide fast predictions to facilitate complex iterative tasks that otherwise entail high computation time. However, purely data-driven models that are trained using limited data often provide physically inconsistent predictions and fail to generalize beyond the training data. This has important consequences in optimization applications where, during optimization, the well control strategies are likely to fall beyond the training data. These limitations undermine the suitability and strength of data-driven models in scientific and engineering applications, where the amount of data is typically limited but physical laws are well-established and frequently used. To address the above challenges, we propose a novel physics-guided machine learning model by incorporating the general structure of the physics-based equations into deep learning models. A typical approach for incorporating physics is adding physics-based constraints in the loss function to regularize the trainable parameters. However, this approach does not exploit or adapt the architecture of the neural network. In this work, the architecture of the proposed recurrent neural networks (RNN) is designed to represent the differential equations of the subsurface flow system. We present the physics-guided RNN models in detail and demonstrate their connection to the underlying differential equations describing the fluid flow physics. We investigate the prediction performance of the proposed models by first applying them to controlled example to evaluate their extrapolation power, before using them with simulated and field datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rayx3x应助华枝春满采纳,获得10
刚刚
1秒前
yee发布了新的文献求助10
2秒前
嘟嘟发布了新的文献求助10
3秒前
oth1k完成签到,获得积分20
3秒前
3秒前
oth1k发布了新的文献求助10
5秒前
达夫斯基完成签到,获得积分10
6秒前
Linden_bd完成签到 ,获得积分10
8秒前
9秒前
HaoyangP发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
12秒前
深情安青应助nuannuan采纳,获得20
12秒前
呆萌冰绿完成签到,获得积分10
12秒前
李大园子完成签到 ,获得积分10
12秒前
12秒前
华枝春满完成签到,获得积分10
13秒前
wuqilong完成签到,获得积分10
14秒前
dreamlightzy应助qmd采纳,获得10
14秒前
NewMoon完成签到,获得积分10
14秒前
FashionBoy应助嘟嘟采纳,获得10
14秒前
洁净的127完成签到,获得积分10
15秒前
16秒前
16秒前
17秒前
2339822272发布了新的文献求助10
17秒前
星星完成签到,获得积分10
17秒前
幸运兔发布了新的文献求助10
18秒前
上官若男应助wqx采纳,获得10
18秒前
月亮邮递员完成签到,获得积分10
20秒前
222完成签到 ,获得积分10
20秒前
Likj完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
22秒前
异氰酸正丙酯完成签到 ,获得积分10
22秒前
wsc发布了新的文献求助10
22秒前
幸运兔完成签到,获得积分10
23秒前
曾祥钰完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414973
求助须知:如何正确求助?哪些是违规求助? 4531742
关于积分的说明 14129928
捐赠科研通 4447167
什么是DOI,文献DOI怎么找? 2439607
邀请新用户注册赠送积分活动 1431721
关于科研通互助平台的介绍 1409333