Physics-Guided Deep Learning for Prediction of Energy Production from Geothermal Reservoirs

利用 深度学习 人工智能 人工神经网络 计算机科学 机器学习 地温梯度 计算 数据驱动 领域(数学) 循环神经网络 物理 地球物理学 算法 计算机安全 数学 纯数学
作者
Zhen Qin,Anyue Jiang,Dave Faulder,Trenton T. Cladouhos,Behnam Jafarpour
出处
期刊:Geothermics [Elsevier]
卷期号:116: 102824-102824 被引量:21
标识
DOI:10.1016/j.geothermics.2023.102824
摘要

Predictive models are traditionally used for the development and management of geothermal reservoirs. While field operation optimization based on physics-based simulations offers dependable strategies, simulation models require detailed descriptions of reservoir conditions and properties and entail extensive computational efforts. As efficient alternatives to traditional physics-based simulation, data-driven predictive models such as deep learning-based models can provide fast predictions to facilitate complex iterative tasks that otherwise entail high computation time. However, purely data-driven models that are trained using limited data often provide physically inconsistent predictions and fail to generalize beyond the training data. This has important consequences in optimization applications where, during optimization, the well control strategies are likely to fall beyond the training data. These limitations undermine the suitability and strength of data-driven models in scientific and engineering applications, where the amount of data is typically limited but physical laws are well-established and frequently used. To address the above challenges, we propose a novel physics-guided machine learning model by incorporating the general structure of the physics-based equations into deep learning models. A typical approach for incorporating physics is adding physics-based constraints in the loss function to regularize the trainable parameters. However, this approach does not exploit or adapt the architecture of the neural network. In this work, the architecture of the proposed recurrent neural networks (RNN) is designed to represent the differential equations of the subsurface flow system. We present the physics-guided RNN models in detail and demonstrate their connection to the underlying differential equations describing the fluid flow physics. We investigate the prediction performance of the proposed models by first applying them to controlled example to evaluate their extrapolation power, before using them with simulated and field datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
箴言完成签到,获得积分10
1秒前
科研通AI6应助阿尔宙斯采纳,获得10
4秒前
Bluebulu完成签到,获得积分10
4秒前
希望天下0贩的0应助Joker采纳,获得10
4秒前
baiseqiutian完成签到,获得积分10
4秒前
XIAOFA完成签到,获得积分10
4秒前
小鹿呀完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
Brett_Liu完成签到,获得积分10
7秒前
酷酷一笑完成签到,获得积分10
8秒前
Link完成签到,获得积分10
8秒前
8秒前
9秒前
LPJ完成签到,获得积分10
9秒前
迷路荷花完成签到,获得积分20
9秒前
小马发布了新的文献求助10
9秒前
10秒前
shaomei发布了新的文献求助30
10秒前
10秒前
充电宝应助nextconnie采纳,获得10
11秒前
Ting应助qq采纳,获得20
11秒前
美好向日葵完成签到,获得积分10
11秒前
小阿发发布了新的文献求助30
11秒前
12秒前
12秒前
12秒前
zhull发布了新的文献求助20
13秒前
悦悦发布了新的文献求助10
13秒前
mashibeo发布了新的文献求助10
13秒前
yang发布了新的文献求助10
14秒前
可爱的函函应助wxxz采纳,获得10
14秒前
14秒前
14秒前
思源应助FFFFF采纳,获得10
14秒前
15秒前
昏睡的蟠桃应助biogarfield采纳,获得200
15秒前
SciGPT应助糖豆采纳,获得10
15秒前
Zoe发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360761
求助须知:如何正确求助?哪些是违规求助? 4491279
关于积分的说明 13981825
捐赠科研通 4393949
什么是DOI,文献DOI怎么找? 2413668
邀请新用户注册赠送积分活动 1406502
关于科研通互助平台的介绍 1381004