Physics-Guided Deep Learning for Prediction of Energy Production from Geothermal Reservoirs

利用 深度学习 人工智能 人工神经网络 计算机科学 机器学习 地温梯度 计算 数据驱动 领域(数学) 循环神经网络 物理 地球物理学 算法 计算机安全 数学 纯数学
作者
Zhen Qin,Anyue Jiang,Dave Faulder,Trenton T. Cladouhos,Behnam Jafarpour
出处
期刊:Geothermics [Elsevier BV]
卷期号:116: 102824-102824 被引量:8
标识
DOI:10.1016/j.geothermics.2023.102824
摘要

Predictive models are traditionally used for the development and management of geothermal reservoirs. While field operation optimization based on physics-based simulations offers dependable strategies, simulation models require detailed descriptions of reservoir conditions and properties and entail extensive computational efforts. As efficient alternatives to traditional physics-based simulation, data-driven predictive models such as deep learning-based models can provide fast predictions to facilitate complex iterative tasks that otherwise entail high computation time. However, purely data-driven models that are trained using limited data often provide physically inconsistent predictions and fail to generalize beyond the training data. This has important consequences in optimization applications where, during optimization, the well control strategies are likely to fall beyond the training data. These limitations undermine the suitability and strength of data-driven models in scientific and engineering applications, where the amount of data is typically limited but physical laws are well-established and frequently used. To address the above challenges, we propose a novel physics-guided machine learning model by incorporating the general structure of the physics-based equations into deep learning models. A typical approach for incorporating physics is adding physics-based constraints in the loss function to regularize the trainable parameters. However, this approach does not exploit or adapt the architecture of the neural network. In this work, the architecture of the proposed recurrent neural networks (RNN) is designed to represent the differential equations of the subsurface flow system. We present the physics-guided RNN models in detail and demonstrate their connection to the underlying differential equations describing the fluid flow physics. We investigate the prediction performance of the proposed models by first applying them to controlled example to evaluate their extrapolation power, before using them with simulated and field datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mouxq发布了新的文献求助10
刚刚
李某完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
hehe发布了新的文献求助30
4秒前
4秒前
4秒前
雪落完成签到,获得积分10
4秒前
5秒前
6秒前
君莫问发布了新的文献求助10
7秒前
xxxxx完成签到,获得积分20
7秒前
zheng发布了新的文献求助10
7秒前
JYC发布了新的文献求助10
7秒前
创不可贴发布了新的文献求助10
8秒前
爆米花应助璀璨采纳,获得10
9秒前
RATHER发布了新的文献求助10
9秒前
科研通AI6应助小树采纳,获得10
10秒前
ooook完成签到 ,获得积分10
10秒前
11秒前
orixero应助Fine采纳,获得10
13秒前
ddddd完成签到,获得积分10
13秒前
领导范儿应助LaLune采纳,获得20
13秒前
香蕉觅云应助xxxxx采纳,获得10
13秒前
打打应助yeezy123采纳,获得10
14秒前
含糊的代丝完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
香蕉觅云应助RATHER采纳,获得10
15秒前
Koichic发布了新的文献求助10
15秒前
ceeray23发布了新的文献求助30
15秒前
16秒前
金小贝完成签到,获得积分10
18秒前
19秒前
qiyun完成签到,获得积分10
19秒前
芽芽配茄子完成签到,获得积分10
19秒前
璀璨发布了新的文献求助10
22秒前
22秒前
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142670
求助须知:如何正确求助?哪些是违规求助? 4340867
关于积分的说明 13518566
捐赠科研通 4180930
什么是DOI,文献DOI怎么找? 2292666
邀请新用户注册赠送积分活动 1293293
关于科研通互助平台的介绍 1235858