Physics-Guided Deep Learning for Prediction of Energy Production from Geothermal Reservoirs

利用 深度学习 人工智能 人工神经网络 计算机科学 机器学习 地温梯度 计算 数据驱动 领域(数学) 循环神经网络 物理 地球物理学 算法 计算机安全 数学 纯数学
作者
Zhen Qin,Anyue Jiang,Dave Faulder,Trenton T. Cladouhos,Behnam Jafarpour
出处
期刊:Geothermics [Elsevier]
卷期号:116: 102824-102824 被引量:8
标识
DOI:10.1016/j.geothermics.2023.102824
摘要

Predictive models are traditionally used for the development and management of geothermal reservoirs. While field operation optimization based on physics-based simulations offers dependable strategies, simulation models require detailed descriptions of reservoir conditions and properties and entail extensive computational efforts. As efficient alternatives to traditional physics-based simulation, data-driven predictive models such as deep learning-based models can provide fast predictions to facilitate complex iterative tasks that otherwise entail high computation time. However, purely data-driven models that are trained using limited data often provide physically inconsistent predictions and fail to generalize beyond the training data. This has important consequences in optimization applications where, during optimization, the well control strategies are likely to fall beyond the training data. These limitations undermine the suitability and strength of data-driven models in scientific and engineering applications, where the amount of data is typically limited but physical laws are well-established and frequently used. To address the above challenges, we propose a novel physics-guided machine learning model by incorporating the general structure of the physics-based equations into deep learning models. A typical approach for incorporating physics is adding physics-based constraints in the loss function to regularize the trainable parameters. However, this approach does not exploit or adapt the architecture of the neural network. In this work, the architecture of the proposed recurrent neural networks (RNN) is designed to represent the differential equations of the subsurface flow system. We present the physics-guided RNN models in detail and demonstrate their connection to the underlying differential equations describing the fluid flow physics. We investigate the prediction performance of the proposed models by first applying them to controlled example to evaluate their extrapolation power, before using them with simulated and field datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fuck完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
冷傲的咖啡豆完成签到 ,获得积分10
2秒前
健忘的谷冬完成签到 ,获得积分20
2秒前
3秒前
fa完成签到,获得积分10
3秒前
在水一方应助kk采纳,获得10
4秒前
ywt完成签到,获得积分10
4秒前
4秒前
ZYQ完成签到 ,获得积分10
4秒前
long666完成签到,获得积分10
5秒前
5秒前
深情安青应助athena采纳,获得30
6秒前
TheQ完成签到,获得积分10
7秒前
领导范儿应助aha采纳,获得10
7秒前
7秒前
111123123123发布了新的文献求助10
7秒前
科研通AI2S应助跳跃尔琴采纳,获得30
8秒前
8秒前
8秒前
ren发布了新的文献求助10
10秒前
jeantao给jeantao的求助进行了留言
11秒前
Cope完成签到 ,获得积分10
12秒前
Yanran完成签到,获得积分10
12秒前
CipherSage应助ywt采纳,获得10
12秒前
13秒前
13秒前
情怀应助feixingyuan采纳,获得10
13秒前
老隋完成签到,获得积分10
13秒前
顺利张发布了新的文献求助10
14秒前
8941完成签到 ,获得积分10
16秒前
1332117762完成签到,获得积分10
16秒前
追梦的人完成签到,获得积分20
16秒前
16秒前
16秒前
汉堡包应助动听的涵山采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134700
求助须知:如何正确求助?哪些是违规求助? 2785629
关于积分的说明 7773333
捐赠科研通 2441325
什么是DOI,文献DOI怎么找? 1297881
科研通“疑难数据库(出版商)”最低求助积分说明 625070
版权声明 600825