Physics-Guided Deep Learning for Prediction of Energy Production from Geothermal Reservoirs

利用 深度学习 人工智能 人工神经网络 计算机科学 机器学习 地温梯度 计算 数据驱动 领域(数学) 循环神经网络 物理 地球物理学 算法 计算机安全 数学 纯数学
作者
Zhen Qin,Anyue Jiang,Dave Faulder,Trenton T. Cladouhos,Behnam Jafarpour
出处
期刊:Geothermics [Elsevier]
卷期号:116: 102824-102824 被引量:21
标识
DOI:10.1016/j.geothermics.2023.102824
摘要

Predictive models are traditionally used for the development and management of geothermal reservoirs. While field operation optimization based on physics-based simulations offers dependable strategies, simulation models require detailed descriptions of reservoir conditions and properties and entail extensive computational efforts. As efficient alternatives to traditional physics-based simulation, data-driven predictive models such as deep learning-based models can provide fast predictions to facilitate complex iterative tasks that otherwise entail high computation time. However, purely data-driven models that are trained using limited data often provide physically inconsistent predictions and fail to generalize beyond the training data. This has important consequences in optimization applications where, during optimization, the well control strategies are likely to fall beyond the training data. These limitations undermine the suitability and strength of data-driven models in scientific and engineering applications, where the amount of data is typically limited but physical laws are well-established and frequently used. To address the above challenges, we propose a novel physics-guided machine learning model by incorporating the general structure of the physics-based equations into deep learning models. A typical approach for incorporating physics is adding physics-based constraints in the loss function to regularize the trainable parameters. However, this approach does not exploit or adapt the architecture of the neural network. In this work, the architecture of the proposed recurrent neural networks (RNN) is designed to represent the differential equations of the subsurface flow system. We present the physics-guided RNN models in detail and demonstrate their connection to the underlying differential equations describing the fluid flow physics. We investigate the prediction performance of the proposed models by first applying them to controlled example to evaluate their extrapolation power, before using them with simulated and field datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Hwjysh发布了新的文献求助10
刚刚
gsgg完成签到 ,获得积分20
刚刚
一一发布了新的文献求助10
刚刚
KJ完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
科研通AI6应助Nicole采纳,获得10
3秒前
漫步云端发布了新的文献求助10
4秒前
饱满跳跳糖完成签到,获得积分10
5秒前
sssss完成签到 ,获得积分10
6秒前
科研通AI6应助吴巧采纳,获得10
6秒前
7秒前
子车浩宇发布了新的文献求助10
7秒前
夏陆徐蓝完成签到,获得积分10
7秒前
8秒前
时镜完成签到,获得积分10
9秒前
10秒前
wenff发布了新的文献求助10
10秒前
wise111发布了新的文献求助10
10秒前
研友_LJGOan发布了新的文献求助10
12秒前
漫步云端完成签到,获得积分10
13秒前
星辰大海应助科研小新采纳,获得10
13秒前
13秒前
子车浩宇完成签到,获得积分10
14秒前
14秒前
14秒前
化雪彼岸发布了新的文献求助10
15秒前
郎琳完成签到,获得积分10
16秒前
酷波er应助欠虐宝宝采纳,获得10
16秒前
liuwei发布了新的文献求助10
16秒前
Hwjysh完成签到,获得积分10
16秒前
发嗲的易形完成签到 ,获得积分10
16秒前
高景行完成签到 ,获得积分10
17秒前
zy发布了新的文献求助10
17秒前
秦贰完成签到,获得积分10
19秒前
19秒前
Forest发布了新的文献求助10
19秒前
Zhe完成签到,获得积分10
20秒前
九月亦星完成签到 ,获得积分10
20秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5501789
求助须知:如何正确求助?哪些是违规求助? 4597876
关于积分的说明 14461669
捐赠科研通 4531433
什么是DOI,文献DOI怎么找? 2483369
邀请新用户注册赠送积分活动 1466861
关于科研通互助平台的介绍 1439478