已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Physics-Guided Deep Learning for Prediction of Energy Production from Geothermal Reservoirs

利用 深度学习 人工智能 人工神经网络 计算机科学 机器学习 地温梯度 计算 数据驱动 领域(数学) 循环神经网络 物理 地球物理学 算法 计算机安全 数学 纯数学
作者
Zhen Qin,Anyue Jiang,Dave Faulder,Trenton T. Cladouhos,Behnam Jafarpour
出处
期刊:Geothermics [Elsevier BV]
卷期号:116: 102824-102824 被引量:8
标识
DOI:10.1016/j.geothermics.2023.102824
摘要

Predictive models are traditionally used for the development and management of geothermal reservoirs. While field operation optimization based on physics-based simulations offers dependable strategies, simulation models require detailed descriptions of reservoir conditions and properties and entail extensive computational efforts. As efficient alternatives to traditional physics-based simulation, data-driven predictive models such as deep learning-based models can provide fast predictions to facilitate complex iterative tasks that otherwise entail high computation time. However, purely data-driven models that are trained using limited data often provide physically inconsistent predictions and fail to generalize beyond the training data. This has important consequences in optimization applications where, during optimization, the well control strategies are likely to fall beyond the training data. These limitations undermine the suitability and strength of data-driven models in scientific and engineering applications, where the amount of data is typically limited but physical laws are well-established and frequently used. To address the above challenges, we propose a novel physics-guided machine learning model by incorporating the general structure of the physics-based equations into deep learning models. A typical approach for incorporating physics is adding physics-based constraints in the loss function to regularize the trainable parameters. However, this approach does not exploit or adapt the architecture of the neural network. In this work, the architecture of the proposed recurrent neural networks (RNN) is designed to represent the differential equations of the subsurface flow system. We present the physics-guided RNN models in detail and demonstrate their connection to the underlying differential equations describing the fluid flow physics. We investigate the prediction performance of the proposed models by first applying them to controlled example to evaluate their extrapolation power, before using them with simulated and field datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归玖完成签到 ,获得积分10
3秒前
叶瑾完成签到,获得积分10
7秒前
善学以致用应助三块石头采纳,获得10
8秒前
11秒前
Lucy完成签到,获得积分10
12秒前
lucky完成签到 ,获得积分10
12秒前
13秒前
szh123完成签到 ,获得积分10
13秒前
15秒前
15秒前
17秒前
DreamMaker完成签到 ,获得积分10
17秒前
17秒前
peng完成签到,获得积分10
18秒前
18秒前
三块石头发布了新的文献求助10
19秒前
田田发布了新的文献求助10
19秒前
大鼻子发布了新的文献求助10
22秒前
22秒前
23秒前
hu完成签到,获得积分10
25秒前
大模型应助飞儿随缘采纳,获得10
26秒前
zzyh完成签到,获得积分10
26秒前
俊逸鹏笑完成签到,获得积分10
27秒前
吹皱一湖春水完成签到 ,获得积分10
28秒前
Owen应助fyia采纳,获得10
28秒前
天天快乐应助大鼻子采纳,获得10
29秒前
Hello应助攀婷小可爱采纳,获得10
29秒前
思源应助shuxian采纳,获得10
30秒前
JamesPei应助ysw979采纳,获得10
30秒前
tbc完成签到 ,获得积分10
31秒前
32秒前
小二郎应助能干的凌香采纳,获得10
34秒前
纳野行发布了新的文献求助10
37秒前
科研通AI5应助田田采纳,获得10
38秒前
40秒前
40秒前
41秒前
在水一方应助卫半烟采纳,获得10
42秒前
44秒前
高分求助中
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Avialinguistics:The Study of Language for Aviation Purposes 270
Andrew Duncan Senior: Physician of the Enlightenment 240
University-Industry Collaboration and the Success Mechanism of Collaboration 210
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3681420
求助须知:如何正确求助?哪些是违规求助? 3233335
关于积分的说明 9808276
捐赠科研通 2944816
什么是DOI,文献DOI怎么找? 1614948
邀请新用户注册赠送积分活动 762388
科研通“疑难数据库(出版商)”最低求助积分说明 737381