生物
螺旋体瘤
枯草芽孢杆菌
微生物学
环介导等温扩增
细菌
遗传学
软体动物
DNA
支原体
作者
Ying Guo,Leiting Zhang,Yang Yue,Jiaying Li,Xiaoqi Luan,Sinan Gong,Yubo Ma,Wei Gu,Jie Du,Qingguo Meng
标识
DOI:10.1016/j.jip.2023.108017
摘要
The tremor disease (TD) caused by Spiroplasma eriocheiris is the most destructive disease of the Chinese mitten crab, Eriocheir sinensis. This study attempts to construct Multienzyme Isothermal Rapid Amplification (MIRA), a quick and simple nucleic acid amplification method that operates at room temperature. Based on the gene sequences of S. eriocheiris, appropriate amplification primers were constructed and screened in this investigation. Both the relevant specific probe and the chosen specific amplification primers were designed and labeled. The MIRA and MIRA-LFD reaction conditions were then optimized. The result showed MIRA and MIRA-FFD could identify S. eriocheiris at 37 °C in 30 min and 15 min, respectively. To investigate the specificity of MIRA and MIRA-LFD, three Gram-negative bacteria (Bacillus subtilis, Bacillus thuringiensis, and Staphylococcus aureus), three Gram-positive bacteria (Escherichia coli, Aeromonas hydrophila, and Salmonella typhimurium) and S. eriocheiris were selected. The result showed MIRA and MIRA-LFD were highly specific to S. eriocheiris and did not react with other six pathogens. The sensitivities of PCR, MIRA, and MIRA-LFD were then evaluated. The result showed the detection limit of PCR is 1 ng/L whereas the detection limit of MIRA and MIRA-LFD is 10 pg/L. Finally, the established MIRA and MIRA-LFD detection methods had the advantages of being quick, sensitive, and specific for S. eriocheiris detection, as well as not requiring any specialized equipment.
科研通智能强力驱动
Strongly Powered by AbleSci AI