An end-to-end approach to combine attention feature extraction and Gaussian Process models for deep multiple instance learning in CT hemorrhage detection

计算机科学 人工智能 稳健性(进化) 机器学习 分类器(UML) 特征提取 端到端原则 高斯过程 模式识别(心理学) 数据挖掘 高斯分布 生物化学 化学 物理 量子力学 基因
作者
Jose Pérez-Cano,Yunan Wu,Arne Schmidt,Miguel López-Pérez,Pablo Morales-Álvarez,Rafael Molina,Aggelos K. Katsaggelos
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:240: 122296-122296 被引量:2
标识
DOI:10.1016/j.eswa.2023.122296
摘要

Intracranial hemorrhage (ICH) is a serious life-threatening emergency caused by blood leakage inside the brain. Radiologists usually confirm the presence of ICH by analyzing computed tomography (CT) scans, so, developing an automated diagnosis system that can process this type of images has become an important research problem. One of the main challenges to apply AI algorithms in this setting is the lack of labelled data. To mitigate the labeling burden, Multiple Instance Learning (MIL) algorithms group instances into bags, relying solely on bag-level labels for model training. Due to their capacity to handle uncertainty and deliver accurate predictions, Gaussian Processes (GPs) stand out as promising classifiers for MIL problems. Recent research has also demonstrated the effectiveness of combining attention mechanisms with GPs for ICH detection. Nonetheless, existing methods have a notable limitation: they train the attention mechanism and the GP separately, resulting in suboptimal feature extraction for GP-based classification. In this study, we introduce an innovative end-to-end MIL model that concurrently trains the CNN backbone and attention mechanism along with the GP classifier. Our approach enhances the robustness and accuracy of bag predictions by optimizing feature extraction for GP-based classification. We validate our method experimentally by focusing on two ICH detection datasets. Our results reveal a significant performance advantage in terms of accuracy, F1-score, precision, and ROC-AUC score over existing MIL approaches, especially two-stage GP approaches. Additionally, we offer empirical insights into the functionality and effectiveness of our novel model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
wking应助xuxieyu采纳,获得10
1秒前
DAaaaa完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
隐形曼青应助臧佳莹采纳,获得10
3秒前
Zx发布了新的文献求助10
4秒前
橙孑发布了新的文献求助30
4秒前
6秒前
感性的莺发布了新的文献求助10
6秒前
ooneakind完成签到,获得积分10
6秒前
Hemingwayway发布了新的文献求助10
6秒前
温柔若颜发布了新的文献求助10
7秒前
7秒前
7秒前
Orange应助xcc采纳,获得10
8秒前
xuxieyu完成签到,获得积分10
8秒前
Nana完成签到,获得积分10
8秒前
course发布了新的文献求助10
9秒前
简单的惋庭完成签到 ,获得积分10
9秒前
慕青应助zz采纳,获得10
9秒前
剑K发布了新的文献求助10
12秒前
12秒前
Nana发布了新的文献求助10
12秒前
Min发布了新的文献求助10
13秒前
chunjianghua发布了新的文献求助30
13秒前
傅荣轩完成签到,获得积分10
14秒前
14秒前
华仔应助从此以后采纳,获得10
14秒前
感性的莺完成签到,获得积分10
16秒前
酷波er应助LamChem采纳,获得10
16秒前
drwalyssa发布了新的文献求助10
17秒前
旺仔仔发布了新的文献求助10
18秒前
18秒前
四代火影完成签到,获得积分10
19秒前
19秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157474
求助须知:如何正确求助?哪些是违规求助? 2808881
关于积分的说明 7878865
捐赠科研通 2467299
什么是DOI,文献DOI怎么找? 1313327
科研通“疑难数据库(出版商)”最低求助积分说明 630393
版权声明 601919