基因组学
高斯过程
计算生物学
概率逻辑
高斯分布
空间分析
人工智能
模式识别(心理学)
生物
计算机科学
数据挖掘
过程(计算)
混合模型
地图集(解剖学)
基因组
光学(聚焦)
图层(电子)
空间相关性
统计模型
联想(心理学)
空间生态学
图像分辨率
物理映射
高斯函数
作者
Andrew Jones,F. William Townes,Didong Li,Barbara E. Engelhardt
出处
期刊:Nature Methods
[Nature Portfolio]
日期:2023-08-17
卷期号:20 (9): 1379-1387
被引量:71
标识
DOI:10.1038/s41592-023-01972-2
摘要
Abstract Spatially resolved genomic technologies have allowed us to study the physical organization of cells and tissues, and promise an understanding of local interactions between cells. However, it remains difficult to precisely align spatial observations across slices, samples, scales, individuals and technologies. Here, we propose a probabilistic model that aligns spatially-resolved samples onto a known or unknown common coordinate system (CCS) with respect to phenotypic readouts (for example, gene expression). Our method, Gaussian Process Spatial Alignment (GPSA), consists of a two-layer Gaussian process: the first layer maps observed samples’ spatial locations onto a CCS, and the second layer maps from the CCS to the observed readouts. Our approach enables complex downstream spatially aware analyses that are impossible or inaccurate with unaligned data, including an analysis of variance, creation of a dense three-dimensional (3D) atlas from sparse two-dimensional (2D) slices or association tests across data modalities.
科研通智能强力驱动
Strongly Powered by AbleSci AI