Cyberbullying Detection and Classification in Social Media Texts Using Machine Learning Techniques

人工智能 机器学习 朴素贝叶斯分类器 支持向量机 随机森林 社会化媒体 计算机科学 Boosting(机器学习) 梯度升压 逻辑回归 危害 心理学 万维网 社会心理学
作者
Joseph Damilola Akinyemi,Ayodeji Ibitoye,Christianah Titilope Oyewale,Olufade F. W. Onifade
出处
期刊:Lecture notes on data engineering and communications technologies 卷期号:: 440-449
标识
DOI:10.1007/978-3-031-36118-0_40
摘要

Cyberbullying (CB) is both a public health concern as well as an emotional problem. There have been efforts to mitigate this problem from different discipline dimensions. Artificial Intelligence (AI) has recently emerged as a solution to CB and outshined many earlier solutions. In this work, we have investigated the problem of CB on social media platforms using Machine/Deep Learning and Natural Language Processing (NLP) techniques. Using a dataset containing 47,692 tweets, we investigated the task of detecting CB from social media posts and classifying them as either age-based, religious, ethnic, and political CB or neutral (non-CB). We spot-checked 5 Machine Learning (ML) algorithms (Gradient Boosting, Logistic Regression, Naïve Bayes, Random Forest, and Support Vector Machine) and one Deep Learning algorithm (a sequence model). The algorithms were evaluated based on accuracy, precision, recall, and F1 score. Random Forest reported the best accuracy of 93% while Naive Bayes reported the worst accuracy of 84%, while the DL model had a classification accuracy of 91%. The developed models can help detect and classify CB sentiments in social media posts, thus reducing the harm caused by CB in the social media space.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助cwq采纳,获得10
刚刚
Jasper应助小康采纳,获得10
刚刚
思源应助cwq采纳,获得10
刚刚
荷包蛋发布了新的文献求助10
1秒前
zrk发布了新的文献求助10
1秒前
sakura发布了新的文献求助10
1秒前
2秒前
2秒前
高高完成签到,获得积分10
2秒前
2秒前
3秒前
踏实汉堡完成签到,获得积分10
3秒前
3秒前
马马发布了新的文献求助10
3秒前
4秒前
4秒前
浮游应助孙朱珠采纳,获得10
4秒前
5秒前
道边的路人甲完成签到,获得积分10
5秒前
窗外的你发布了新的文献求助10
6秒前
耍酷发布了新的文献求助10
6秒前
6秒前
可爱的函函应助荷包蛋采纳,获得10
7秒前
陈陈陈完成签到,获得积分20
7秒前
雷锋发布了新的文献求助10
8秒前
whoKnows应助火火采纳,获得20
8秒前
8秒前
hezaly发布了新的文献求助10
9秒前
斯文败类应助不安的冷荷采纳,获得10
9秒前
我口中说的永远完成签到 ,获得积分10
9秒前
yy发布了新的文献求助10
10秒前
10秒前
10秒前
传奇3应助cwq采纳,获得10
10秒前
赘婿应助cwq采纳,获得10
10秒前
10秒前
充电宝应助cwq采纳,获得10
10秒前
10秒前
李爱国应助cwq采纳,获得10
10秒前
小二郎应助cwq采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642352
关于积分的说明 14667621
捐赠科研通 4583738
什么是DOI,文献DOI怎么找? 2514386
邀请新用户注册赠送积分活动 1488750
关于科研通互助平台的介绍 1459336