Cobalt-doped tungsten suboxides for supercapacitor applications

材料科学 超级电容器 兴奋剂 电极 无定形固体 纳米技术 化学工程 储能 光电子学 电容 结晶学 化学 冶金 物理化学 功率(物理) 物理 量子力学 工程类
作者
Mohammad R. Thalji,Gomaa A. M. Ali,Jae‐Jin Shim,Kwok Feng Chong
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:473: 145341-145341 被引量:90
标识
DOI:10.1016/j.cej.2023.145341
摘要

A crucial hurdle in developing supercapacitors is the creation of metal oxides with nanoscale structures that possess improved chemically active surfaces, ion/charge transport kinetics, and minimized ion-diffusion pathways. A metal-doping strategy to produce oxygen vacancies and increase electrical conductivity has proven effective for designing high-performance materials for energy storage devices. Herein, cobalt-doped tungsten suboxide (Co-doped W18O49) is grown on carbon cloth (CC) using a solvothermal approach and used as an electrode material for supercapacitor applications for the first time. Through this strategy, structurally distorted W18O49 is obtained by detecting a more apparent amorphous area caused by forming more oxygen vacancies with the bending of the lattice fringes. Benefiting from the synergy of more oxygen vacancies, increased lattice spacing, a high specific surface area, and accelerated ion diffusion, the Co-doped W18O49/CC electrode achieves a specific capacity of 475 C g−1 (792 F g−1) at a current density of 1.0 A g−1, which is superior to that of the undoped W18O49/CC (259 C g−1, 432 F g−1) and among the highest reported to date. Interestingly, the asymmetric supercapacitor device assembled using Co-doped W18O49/CC//AC/CC can provide a high energy density of 35.0 Wh kg−1. This strategy proves that the distortion of the W18O49 structure by Co doping improves the ion storage performance and self-discharge behavior. Also, it can enhance the energy storage performance of other electrode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助Duxize采纳,获得10
1秒前
1秒前
2秒前
cj发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
4秒前
4秒前
5秒前
6秒前
开心夏旋完成签到,获得积分10
6秒前
嘞是举仔应助专注的草丛采纳,获得20
7秒前
好好好完成签到,获得积分10
7秒前
洁净如音完成签到,获得积分10
7秒前
wheeler1发布了新的文献求助10
7秒前
浮云发布了新的文献求助30
8秒前
8秒前
8秒前
Redamancy完成签到,获得积分10
9秒前
盒子完成签到,获得积分20
9秒前
开心夏旋发布了新的文献求助10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
12秒前
12秒前
12秒前
刘耀威完成签到,获得积分20
13秒前
啦11发布了新的文献求助10
13秒前
13秒前
14秒前
传奇3应助浮云采纳,获得10
14秒前
14秒前
情怀应助玩命的糖豆采纳,获得10
14秒前
14秒前
酷波er应助清新的秋白采纳,获得10
14秒前
元谷雪发布了新的文献求助10
15秒前
whiteside完成签到,获得积分10
15秒前
16秒前
Andd发布了新的文献求助10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695511
求助须知:如何正确求助?哪些是违规求助? 5102149
关于积分的说明 15216311
捐赠科研通 4851790
什么是DOI,文献DOI怎么找? 2602705
邀请新用户注册赠送积分活动 1554389
关于科研通互助平台的介绍 1512420