Towards Effective Collaborative Learning in Long-Tailed Recognition

计算机科学 机器学习 稳健性(进化) 人工智能 蒸馏 学习迁移 特征(语言学) 班级(哲学) 特征提取 协作学习 数据挖掘 哲学 基因 有机化学 化学 知识管理 生物化学 语言学
作者
Zhengzhuo Xu,Zenghao Chai,Chengyin Xu,Chun Yuan,Haiqin Yang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 3754-3764
标识
DOI:10.1109/tmm.2023.3314980
摘要

Real-world data usually suffers from severe class imbalance and long-tailed distributions, where minority classes are significantly underrepresented compared to the majority ones. Recent research prefers to utilize multi-expert architectures to mitigate the model uncertainty on the minority, where collaborative learning is employed to aggregate the knowledge of experts, i.e., online distillation. In this paper, we observe that the knowledge transfer between experts is imbalanced in terms of class distribution, which results in limited performance improvement of the minority classes. To address it, we propose a re-weighted distillation loss by comparing two classifiers' predictions, which are supervised by online distillation and label annotations, respectively. We also emphasize that feature-level distillation will significantly improve model performance and increase feature robustness. Finally, we propose an Effective Collaborative Learning (ECL) framework that integrates a contrastive proxy task branch to further improve feature quality. Quantitative and qualitative experiments on four standard datasets demonstrate that ECL achieves state-of-the-art performance and the detailed ablation studies manifest the effectiveness of each component in ECL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助thousandlong采纳,获得10
刚刚
快乐蛋挞完成签到,获得积分20
1秒前
1秒前
瘦瘦语蕊完成签到,获得积分10
2秒前
wangjiale完成签到,获得积分10
2秒前
Xumm完成签到 ,获得积分10
4秒前
虚心虾米发布了新的文献求助10
4秒前
黑眼圈发布了新的文献求助30
5秒前
路漫漫123完成签到,获得积分10
6秒前
iceberg完成签到,获得积分10
6秒前
6秒前
王Jackson发布了新的文献求助30
6秒前
7秒前
8秒前
la完成签到,获得积分10
8秒前
wsy完成签到,获得积分10
8秒前
大壮完成签到,获得积分10
9秒前
酷波er应助走走采纳,获得10
10秒前
thousandlong发布了新的文献求助10
10秒前
从容的安双完成签到,获得积分10
10秒前
11秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
顾矜应助感谢你的帮助采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
13秒前
lv发布了新的文献求助10
13秒前
yznfly应助科研通管家采纳,获得20
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
13秒前
柯一一应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
14秒前
科研通AI2S应助虚幻的青槐采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959583
求助须知:如何正确求助?哪些是违规求助? 3505844
关于积分的说明 11126416
捐赠科研通 3237765
什么是DOI,文献DOI怎么找? 1789326
邀请新用户注册赠送积分活动 871669
科研通“疑难数据库(出版商)”最低求助积分说明 802963