光催化
纳米棒
纳米晶
钙钛矿(结构)
纳米点
卤化物
纳米技术
化学
材料科学
纳米线
纳米颗粒
纳米结构
化学工程
无机化学
催化作用
结晶学
工程类
生物化学
作者
Haoxin Mai,Xuying Li,Junlin Lu,Xiaoming Wen,Tu C. Le,Salvy P. Russo,Dehong Chen,Rachel A. Caruso
摘要
Halide perovskites have attracted enormous attention due to their potential applications in optoelectronics and photocatalysis. However, concerns over their instability, toxicity, and unsatisfactory efficiency have necessitated the development of lead-free all-inorganic halide perovskites. A major challenge in designing efficient halide perovskites for practical applications is the lack of effective methods for producing nanocrystals with precise size and shape control. In this work, a layered perovskite, Cs4ZnSb2Cl12 (CZS), is found from calculations to exhibit size- and facet-dependent optoelectronic properties in the nanoscale, and thus, a colloidal method is used to synthesize the CZS nanoparticles with size-tunable morphologies: zero- (nanodots), one- (nanowires and nanorods), two- (nanoplates), and three-dimensional (nanopolyhedra). The growth kinetics of the CZS nanostructures, along with the effects of surface ligands, reaction temperature, and time were investigated. The optoelectronic properties of the nanocrystals varied with size due to quantum confinement effects and with shape due to anisotropy within the crystals and the exposure of specific facets. These properties could be modulated to enhance the visible-light photocatalytic performance for toluene oxidation. In particular, the 9.7 nm CZS nanoplates displayed a toluene to benzaldehyde conversion rate of 1893 μmol g-1 h-1 (95% selectivity), 500 times higher than the bulk synthesized CZS, and comparable with the reported photocatalysts. This study demonstrates the integration of theoretical calculations and synthesis, revealing an approach to the design and fabrication of novel, high-performance colloidal perovskite nanocrystals for optoelectronic and photocatalytic applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI