Improvement of streamflow simulation by combining physically hydrological model with deep learning methods in data-scarce glacial river basin

水流 计算机科学 冰期 数据挖掘 特征(语言学) 环境科学 人工智能 机器学习 流域 地质学 地貌学 地图学 地理 语言学 哲学
作者
Chengde Yang,Min Xu,Shichang Kang,Congsheng Fu,Didi Hu
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:625: 129990-129990 被引量:23
标识
DOI:10.1016/j.jhydrol.2023.129990
摘要

Robust streamflow simulation at glacial basins is essential for the improvement of water sustainability assessment, water security evaluation, and water resource management under the rapidly changing climate. Therefore, we proposed a hybrid modelling framework to link the SWAT+ model considering glacial hydrological processes (GSWAT+) with Gated Recurrent Unit (GRU) neural networks to improve the model simulations and to establish a framework for the robust simulation and forecast of high and low flows in glacial river basins, which could be further used for the explorations of extreme hydrological events under a warming climate. The performance of different models (GSWAT+, GRU, and GRU-GSWAT+, respectively) were thoroughly investigated based on numerical experiments for two data-scarce glacial watersheds in Northwest China. The results suggested that the hybrid model (GRU-GSWAT+) outperformed both the individual deep learning (DL) model (GRU) and the conventional hydrological model (GSWAT+) in terms of simulation and prediction accuracy. Notably, the proposed hybrid model considerably enhanced the simulations of low and high flows that the conventional GSWAT+ failed to capture. Furthermore, utilizing suitable data integration (DI) schemes on feature and target sequences can substantially help to strengthen model stability and representativeness for monthly and annual streamflow sequences. Specifically, introducing one order differential method and decomposition approach, such as ensemble empirical signal decomposition (EEMD) and complete EEMD with adaptive noise (CEEMDAN), into feature and target sequences enriched the learnable ancillary information, which consequently strengthened the predictive performance of the proposed model. Overall, the proposed hybrid model with the suitable DI scheme has the potential to significantly enhance the accuracy of streamflow simulation in data-scarce glacial river basins. This hybrid model not only upheld the fundamental physical principles from the GSWAT+ model, but also considerably mitigated the accumulated bias errors, which caused by the shortage of climate data and inadequate hydrological principles, by using DL based model and DI schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄利发布了新的文献求助10
1秒前
galaa完成签到,获得积分10
2秒前
liuguanfeng发布了新的文献求助10
3秒前
36456657应助喜悦寄风采纳,获得10
3秒前
litn完成签到 ,获得积分10
3秒前
小花小宝和阿飞完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
Jinnnnn完成签到,获得积分10
4秒前
小黑发布了新的文献求助10
4秒前
4秒前
Lemon完成签到 ,获得积分10
5秒前
max发布了新的文献求助10
5秒前
5秒前
发条发布了新的文献求助10
5秒前
思源应助咖啡豆采纳,获得10
6秒前
科研通AI2S应助SHITOU采纳,获得10
6秒前
6秒前
7秒前
666完成签到 ,获得积分10
8秒前
8秒前
yuanpiao完成签到,获得积分10
8秒前
Emiya完成签到,获得积分10
8秒前
9秒前
9秒前
Mm林发布了新的文献求助10
10秒前
难过无血完成签到,获得积分10
10秒前
冷傲如冬发布了新的文献求助10
11秒前
11秒前
zhucebuliaobb完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
充电宝应助liuguanfeng采纳,获得10
11秒前
祝yu完成签到 ,获得积分10
12秒前
两天浇一次水完成签到,获得积分10
12秒前
孔明发布了新的文献求助10
13秒前
催一催发布了新的文献求助10
14秒前
14秒前
15秒前
yiyi完成签到,获得积分10
15秒前
认真子默发布了新的文献求助10
15秒前
Duqianying发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666928
求助须知:如何正确求助?哪些是违规求助? 4883518
关于积分的说明 15118330
捐赠科研通 4825864
什么是DOI,文献DOI怎么找? 2583597
邀请新用户注册赠送积分活动 1537760
关于科研通互助平台的介绍 1495956