Improvement of streamflow simulation by combining physically hydrological model with deep learning methods in data-scarce glacial river basin

水流 计算机科学 冰期 数据挖掘 特征(语言学) 环境科学 人工智能 机器学习 流域 地质学 地貌学 地图学 地理 语言学 哲学
作者
Chengde Yang,Min Xu,Shichang Kang,Congsheng Fu,Didi Hu
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:625: 129990-129990 被引量:20
标识
DOI:10.1016/j.jhydrol.2023.129990
摘要

Robust streamflow simulation at glacial basins is essential for the improvement of water sustainability assessment, water security evaluation, and water resource management under the rapidly changing climate. Therefore, we proposed a hybrid modelling framework to link the SWAT+ model considering glacial hydrological processes (GSWAT+) with Gated Recurrent Unit (GRU) neural networks to improve the model simulations and to establish a framework for the robust simulation and forecast of high and low flows in glacial river basins, which could be further used for the explorations of extreme hydrological events under a warming climate. The performance of different models (GSWAT+, GRU, and GRU-GSWAT+, respectively) were thoroughly investigated based on numerical experiments for two data-scarce glacial watersheds in Northwest China. The results suggested that the hybrid model (GRU-GSWAT+) outperformed both the individual deep learning (DL) model (GRU) and the conventional hydrological model (GSWAT+) in terms of simulation and prediction accuracy. Notably, the proposed hybrid model considerably enhanced the simulations of low and high flows that the conventional GSWAT+ failed to capture. Furthermore, utilizing suitable data integration (DI) schemes on feature and target sequences can substantially help to strengthen model stability and representativeness for monthly and annual streamflow sequences. Specifically, introducing one order differential method and decomposition approach, such as ensemble empirical signal decomposition (EEMD) and complete EEMD with adaptive noise (CEEMDAN), into feature and target sequences enriched the learnable ancillary information, which consequently strengthened the predictive performance of the proposed model. Overall, the proposed hybrid model with the suitable DI scheme has the potential to significantly enhance the accuracy of streamflow simulation in data-scarce glacial river basins. This hybrid model not only upheld the fundamental physical principles from the GSWAT+ model, but also considerably mitigated the accumulated bias errors, which caused by the shortage of climate data and inadequate hydrological principles, by using DL based model and DI schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特冰安发布了新的文献求助10
2秒前
3秒前
独特元蝶完成签到,获得积分20
4秒前
yolo发布了新的文献求助10
4秒前
失眠无声发布了新的文献求助10
5秒前
独特元蝶发布了新的文献求助10
6秒前
lei029发布了新的文献求助10
7秒前
舒适静丹完成签到,获得积分10
8秒前
iris完成签到,获得积分10
8秒前
11秒前
12秒前
可爱的函函应助onlyan采纳,获得10
12秒前
量子星尘发布了新的文献求助10
15秒前
17秒前
赘婿应助Yy采纳,获得10
20秒前
21秒前
22秒前
25秒前
26秒前
苗苗发布了新的文献求助10
26秒前
dudu发布了新的文献求助30
27秒前
李爱国应助不吃西瓜采纳,获得10
28秒前
罗里完成签到 ,获得积分10
28秒前
YanDongXu发布了新的文献求助10
28秒前
30秒前
啦啦完成签到,获得积分20
30秒前
wangying完成签到,获得积分10
33秒前
HIT_C完成签到,获得积分20
34秒前
隐形曼青应助野山采纳,获得10
35秒前
36秒前
在水一方应助Lucas采纳,获得10
37秒前
Akim应助野山采纳,获得10
38秒前
38秒前
不吃西瓜发布了新的文献求助10
39秒前
39秒前
荔枝凉完成签到,获得积分10
40秒前
科研通AI2S应助Asuna采纳,获得10
40秒前
Ava应助SSS水鱼采纳,获得10
40秒前
45秒前
13201099463发布了新的文献求助10
48秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975378
求助须知:如何正确求助?哪些是违规求助? 3519775
关于积分的说明 11199621
捐赠科研通 3256067
什么是DOI,文献DOI怎么找? 1798124
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305