Improvement of streamflow simulation by combining physically hydrological model with deep learning methods in data-scarce glacial river basin

水流 计算机科学 冰期 数据挖掘 特征(语言学) 环境科学 人工智能 机器学习 流域 地质学 地貌学 地图学 地理 语言学 哲学
作者
Chengde Yang,Min Xu,Shichang Kang,Congsheng Fu,Didi Hu
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:625: 129990-129990 被引量:23
标识
DOI:10.1016/j.jhydrol.2023.129990
摘要

Robust streamflow simulation at glacial basins is essential for the improvement of water sustainability assessment, water security evaluation, and water resource management under the rapidly changing climate. Therefore, we proposed a hybrid modelling framework to link the SWAT+ model considering glacial hydrological processes (GSWAT+) with Gated Recurrent Unit (GRU) neural networks to improve the model simulations and to establish a framework for the robust simulation and forecast of high and low flows in glacial river basins, which could be further used for the explorations of extreme hydrological events under a warming climate. The performance of different models (GSWAT+, GRU, and GRU-GSWAT+, respectively) were thoroughly investigated based on numerical experiments for two data-scarce glacial watersheds in Northwest China. The results suggested that the hybrid model (GRU-GSWAT+) outperformed both the individual deep learning (DL) model (GRU) and the conventional hydrological model (GSWAT+) in terms of simulation and prediction accuracy. Notably, the proposed hybrid model considerably enhanced the simulations of low and high flows that the conventional GSWAT+ failed to capture. Furthermore, utilizing suitable data integration (DI) schemes on feature and target sequences can substantially help to strengthen model stability and representativeness for monthly and annual streamflow sequences. Specifically, introducing one order differential method and decomposition approach, such as ensemble empirical signal decomposition (EEMD) and complete EEMD with adaptive noise (CEEMDAN), into feature and target sequences enriched the learnable ancillary information, which consequently strengthened the predictive performance of the proposed model. Overall, the proposed hybrid model with the suitable DI scheme has the potential to significantly enhance the accuracy of streamflow simulation in data-scarce glacial river basins. This hybrid model not only upheld the fundamental physical principles from the GSWAT+ model, but also considerably mitigated the accumulated bias errors, which caused by the shortage of climate data and inadequate hydrological principles, by using DL based model and DI schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助十三采纳,获得10
1秒前
李健应助hah采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
阳光青烟发布了新的文献求助10
1秒前
1秒前
Wow完成签到,获得积分10
2秒前
默默完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
缓慢的凝安完成签到 ,获得积分10
3秒前
liu发布了新的文献求助10
4秒前
4秒前
鸣笛应助机灵的盼望采纳,获得10
4秒前
谢同学发布了新的文献求助10
4秒前
zhx发布了新的文献求助10
5秒前
NexusExplorer应助mia采纳,获得10
5秒前
5秒前
荣枫发布了新的文献求助10
5秒前
6秒前
超级的鞅发布了新的文献求助20
6秒前
小二郎应助小坨坨采纳,获得10
6秒前
7秒前
7秒前
着急的语海完成签到,获得积分10
7秒前
9秒前
sota完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
苏步清完成签到,获得积分10
9秒前
add关闭了add文献求助
9秒前
SZY发布了新的文献求助10
10秒前
哈哈王发布了新的文献求助10
10秒前
CodeCraft应助petrichor采纳,获得10
10秒前
10秒前
轻松土豆完成签到,获得积分10
10秒前
徐zhipei发布了新的文献求助10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403