Improvement of streamflow simulation by combining physically hydrological model with deep learning methods in data-scarce glacial river basin

水流 计算机科学 冰期 数据挖掘 特征(语言学) 环境科学 人工智能 机器学习 流域 地质学 地貌学 地图学 地理 语言学 哲学
作者
Chengde Yang,Min Xu,Shichang Kang,Congsheng Fu,Didi Hu
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:625: 129990-129990 被引量:9
标识
DOI:10.1016/j.jhydrol.2023.129990
摘要

Robust streamflow simulation at glacial basins is essential for the improvement of water sustainability assessment, water security evaluation, and water resource management under the rapidly changing climate. Therefore, we proposed a hybrid modelling framework to link the SWAT+ model considering glacial hydrological processes (GSWAT+) with Gated Recurrent Unit (GRU) neural networks to improve the model simulations and to establish a framework for the robust simulation and forecast of high and low flows in glacial river basins, which could be further used for the explorations of extreme hydrological events under a warming climate. The performance of different models (GSWAT+, GRU, and GRU-GSWAT+, respectively) were thoroughly investigated based on numerical experiments for two data-scarce glacial watersheds in Northwest China. The results suggested that the hybrid model (GRU-GSWAT+) outperformed both the individual deep learning (DL) model (GRU) and the conventional hydrological model (GSWAT+) in terms of simulation and prediction accuracy. Notably, the proposed hybrid model considerably enhanced the simulations of low and high flows that the conventional GSWAT+ failed to capture. Furthermore, utilizing suitable data integration (DI) schemes on feature and target sequences can substantially help to strengthen model stability and representativeness for monthly and annual streamflow sequences. Specifically, introducing one order differential method and decomposition approach, such as ensemble empirical signal decomposition (EEMD) and complete EEMD with adaptive noise (CEEMDAN), into feature and target sequences enriched the learnable ancillary information, which consequently strengthened the predictive performance of the proposed model. Overall, the proposed hybrid model with the suitable DI scheme has the potential to significantly enhance the accuracy of streamflow simulation in data-scarce glacial river basins. This hybrid model not only upheld the fundamental physical principles from the GSWAT+ model, but also considerably mitigated the accumulated bias errors, which caused by the shortage of climate data and inadequate hydrological principles, by using DL based model and DI schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助hhh采纳,获得10
刚刚
wyn完成签到,获得积分10
2秒前
南城以南完成签到,获得积分10
2秒前
SCI完成签到 ,获得积分10
3秒前
4秒前
Rock完成签到 ,获得积分10
5秒前
库昊的假粉丝应助牛牛采纳,获得30
6秒前
Lu完成签到,获得积分10
8秒前
小秦秦完成签到 ,获得积分10
9秒前
科目三应助冷傲的嵩采纳,获得10
9秒前
yin完成签到 ,获得积分10
13秒前
黄辉冯完成签到,获得积分10
13秒前
王王的狗子完成签到 ,获得积分10
14秒前
14秒前
20秒前
马里奥完成签到 ,获得积分10
20秒前
21秒前
浪里白条完成签到,获得积分10
23秒前
24秒前
cy完成签到,获得积分10
26秒前
冷傲的嵩发布了新的文献求助10
28秒前
lily发布了新的文献求助10
29秒前
归途完成签到 ,获得积分10
29秒前
32秒前
领导范儿应助科研通管家采纳,获得10
33秒前
33秒前
情怀应助科研通管家采纳,获得10
33秒前
33秒前
脑洞疼应助科研通管家采纳,获得10
33秒前
zyy6657完成签到,获得积分10
34秒前
秦月未完完成签到,获得积分10
34秒前
鱼秋完成签到,获得积分10
34秒前
zoie0809完成签到,获得积分10
35秒前
爆米花应助烊驼采纳,获得10
36秒前
luxiansheng发布了新的文献求助80
37秒前
CodeCraft应助冷傲的嵩采纳,获得10
38秒前
缓存完成签到 ,获得积分10
39秒前
39秒前
小马甲应助落晨采纳,获得10
39秒前
斯文败类应助塔兹米采纳,获得10
43秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299938
求助须知:如何正确求助?哪些是违规求助? 2934780
关于积分的说明 8470445
捐赠科研通 2608342
什么是DOI,文献DOI怎么找? 1424154
科研通“疑难数据库(出版商)”最低求助积分说明 661873
邀请新用户注册赠送积分活动 645601