清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Improvement of streamflow simulation by combining physically hydrological model with deep learning methods in data-scarce glacial river basin

水流 计算机科学 冰期 数据挖掘 特征(语言学) 环境科学 人工智能 机器学习 流域 地质学 地貌学 地图学 地理 语言学 哲学
作者
Chengde Yang,Min Xu,Shichang Kang,Congsheng Fu,Didi Hu
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:625: 129990-129990 被引量:23
标识
DOI:10.1016/j.jhydrol.2023.129990
摘要

Robust streamflow simulation at glacial basins is essential for the improvement of water sustainability assessment, water security evaluation, and water resource management under the rapidly changing climate. Therefore, we proposed a hybrid modelling framework to link the SWAT+ model considering glacial hydrological processes (GSWAT+) with Gated Recurrent Unit (GRU) neural networks to improve the model simulations and to establish a framework for the robust simulation and forecast of high and low flows in glacial river basins, which could be further used for the explorations of extreme hydrological events under a warming climate. The performance of different models (GSWAT+, GRU, and GRU-GSWAT+, respectively) were thoroughly investigated based on numerical experiments for two data-scarce glacial watersheds in Northwest China. The results suggested that the hybrid model (GRU-GSWAT+) outperformed both the individual deep learning (DL) model (GRU) and the conventional hydrological model (GSWAT+) in terms of simulation and prediction accuracy. Notably, the proposed hybrid model considerably enhanced the simulations of low and high flows that the conventional GSWAT+ failed to capture. Furthermore, utilizing suitable data integration (DI) schemes on feature and target sequences can substantially help to strengthen model stability and representativeness for monthly and annual streamflow sequences. Specifically, introducing one order differential method and decomposition approach, such as ensemble empirical signal decomposition (EEMD) and complete EEMD with adaptive noise (CEEMDAN), into feature and target sequences enriched the learnable ancillary information, which consequently strengthened the predictive performance of the proposed model. Overall, the proposed hybrid model with the suitable DI scheme has the potential to significantly enhance the accuracy of streamflow simulation in data-scarce glacial river basins. This hybrid model not only upheld the fundamental physical principles from the GSWAT+ model, but also considerably mitigated the accumulated bias errors, which caused by the shortage of climate data and inadequate hydrological principles, by using DL based model and DI schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
25秒前
ceeray23发布了新的文献求助20
29秒前
JESI完成签到,获得积分10
37秒前
sube完成签到 ,获得积分10
38秒前
jesi完成签到,获得积分10
44秒前
赵芳完成签到,获得积分10
59秒前
Cassie关注了科研通微信公众号
1分钟前
vbnn完成签到 ,获得积分10
1分钟前
1分钟前
缓慢雨南发布了新的文献求助10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
1分钟前
kgf完成签到 ,获得积分20
1分钟前
曹国庆完成签到 ,获得积分10
2分钟前
orixero应助ceeray23采纳,获得20
2分钟前
斯文败类应助ceeray23采纳,获得20
2分钟前
2分钟前
2分钟前
袁青寒发布了新的文献求助10
2分钟前
科研通AI2S应助ceeray23采纳,获得20
2分钟前
热带蚂蚁完成签到 ,获得积分10
2分钟前
云锋完成签到,获得积分10
3分钟前
Cassie完成签到,获得积分10
3分钟前
3分钟前
ceeray23发布了新的文献求助20
3分钟前
jsinm-thyroid完成签到 ,获得积分10
3分钟前
qinghe完成签到 ,获得积分10
3分钟前
铁瓜李完成签到 ,获得积分10
3分钟前
领导范儿应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
4分钟前
Japrin完成签到,获得积分10
4分钟前
霜降完成签到,获得积分10
4分钟前
5分钟前
abc完成签到 ,获得积分0
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599887
求助须知:如何正确求助?哪些是违规求助? 4685622
关于积分的说明 14838712
捐赠科研通 4672749
什么是DOI,文献DOI怎么找? 2538369
邀请新用户注册赠送积分活动 1505574
关于科研通互助平台的介绍 1470965