Improvement of streamflow simulation by combining physically hydrological model with deep learning methods in data-scarce glacial river basin

水流 计算机科学 冰期 数据挖掘 特征(语言学) 环境科学 人工智能 机器学习 流域 地质学 地貌学 地图学 地理 语言学 哲学
作者
Chengde Yang,Min Xu,Shichang Kang,Congsheng Fu,Didi Hu
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:625: 129990-129990 被引量:23
标识
DOI:10.1016/j.jhydrol.2023.129990
摘要

Robust streamflow simulation at glacial basins is essential for the improvement of water sustainability assessment, water security evaluation, and water resource management under the rapidly changing climate. Therefore, we proposed a hybrid modelling framework to link the SWAT+ model considering glacial hydrological processes (GSWAT+) with Gated Recurrent Unit (GRU) neural networks to improve the model simulations and to establish a framework for the robust simulation and forecast of high and low flows in glacial river basins, which could be further used for the explorations of extreme hydrological events under a warming climate. The performance of different models (GSWAT+, GRU, and GRU-GSWAT+, respectively) were thoroughly investigated based on numerical experiments for two data-scarce glacial watersheds in Northwest China. The results suggested that the hybrid model (GRU-GSWAT+) outperformed both the individual deep learning (DL) model (GRU) and the conventional hydrological model (GSWAT+) in terms of simulation and prediction accuracy. Notably, the proposed hybrid model considerably enhanced the simulations of low and high flows that the conventional GSWAT+ failed to capture. Furthermore, utilizing suitable data integration (DI) schemes on feature and target sequences can substantially help to strengthen model stability and representativeness for monthly and annual streamflow sequences. Specifically, introducing one order differential method and decomposition approach, such as ensemble empirical signal decomposition (EEMD) and complete EEMD with adaptive noise (CEEMDAN), into feature and target sequences enriched the learnable ancillary information, which consequently strengthened the predictive performance of the proposed model. Overall, the proposed hybrid model with the suitable DI scheme has the potential to significantly enhance the accuracy of streamflow simulation in data-scarce glacial river basins. This hybrid model not only upheld the fundamental physical principles from the GSWAT+ model, but also considerably mitigated the accumulated bias errors, which caused by the shortage of climate data and inadequate hydrological principles, by using DL based model and DI schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助pika1234采纳,获得10
1秒前
棋士发布了新的文献求助10
1秒前
归尘发布了新的文献求助10
1秒前
wuliweiwei发布了新的文献求助10
1秒前
1秒前
2秒前
刘唐荣发布了新的文献求助10
2秒前
愉快续发布了新的文献求助10
2秒前
小吴同志发布了新的文献求助10
2秒前
2秒前
天天快乐应助姜鸽采纳,获得10
3秒前
月亮发布了新的文献求助10
3秒前
落叶完成签到,获得积分10
3秒前
4秒前
Akim应助超级冰块采纳,获得10
4秒前
张纪华发布了新的文献求助10
4秒前
5秒前
邓111111完成签到,获得积分10
5秒前
自信之卉完成签到,获得积分10
5秒前
5秒前
令狐天与发布了新的文献求助10
5秒前
浮游应助TristanGuan采纳,获得10
6秒前
6秒前
文艺的夏烟完成签到,获得积分10
6秒前
剑客龙发布了新的文献求助10
6秒前
6秒前
从容秋双完成签到,获得积分10
6秒前
传奇3应助Clarie采纳,获得10
6秒前
可靠幼旋完成签到,获得积分10
7秒前
7秒前
mumumuzzz发布了新的文献求助50
7秒前
黄sir发布了新的文献求助10
7秒前
苦瓜人发布了新的文献求助30
8秒前
8秒前
yy发布了新的文献求助10
8秒前
靓丽的悒完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
ZZM完成签到,获得积分10
9秒前
9秒前
刘唐荣完成签到,获得积分10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692559
求助须知:如何正确求助?哪些是违规求助? 5089055
关于积分的说明 15208836
捐赠科研通 4849783
什么是DOI,文献DOI怎么找? 2601280
邀请新用户注册赠送积分活动 1553052
关于科研通互助平台的介绍 1511274