Improvement of streamflow simulation by combining physically hydrological model with deep learning methods in data-scarce glacial river basin

水流 计算机科学 冰期 数据挖掘 特征(语言学) 环境科学 人工智能 机器学习 流域 地质学 地貌学 地图学 地理 语言学 哲学
作者
Chengde Yang,Min Xu,Shichang Kang,Congsheng Fu,Didi Hu
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:625: 129990-129990 被引量:23
标识
DOI:10.1016/j.jhydrol.2023.129990
摘要

Robust streamflow simulation at glacial basins is essential for the improvement of water sustainability assessment, water security evaluation, and water resource management under the rapidly changing climate. Therefore, we proposed a hybrid modelling framework to link the SWAT+ model considering glacial hydrological processes (GSWAT+) with Gated Recurrent Unit (GRU) neural networks to improve the model simulations and to establish a framework for the robust simulation and forecast of high and low flows in glacial river basins, which could be further used for the explorations of extreme hydrological events under a warming climate. The performance of different models (GSWAT+, GRU, and GRU-GSWAT+, respectively) were thoroughly investigated based on numerical experiments for two data-scarce glacial watersheds in Northwest China. The results suggested that the hybrid model (GRU-GSWAT+) outperformed both the individual deep learning (DL) model (GRU) and the conventional hydrological model (GSWAT+) in terms of simulation and prediction accuracy. Notably, the proposed hybrid model considerably enhanced the simulations of low and high flows that the conventional GSWAT+ failed to capture. Furthermore, utilizing suitable data integration (DI) schemes on feature and target sequences can substantially help to strengthen model stability and representativeness for monthly and annual streamflow sequences. Specifically, introducing one order differential method and decomposition approach, such as ensemble empirical signal decomposition (EEMD) and complete EEMD with adaptive noise (CEEMDAN), into feature and target sequences enriched the learnable ancillary information, which consequently strengthened the predictive performance of the proposed model. Overall, the proposed hybrid model with the suitable DI scheme has the potential to significantly enhance the accuracy of streamflow simulation in data-scarce glacial river basins. This hybrid model not only upheld the fundamental physical principles from the GSWAT+ model, but also considerably mitigated the accumulated bias errors, which caused by the shortage of climate data and inadequate hydrological principles, by using DL based model and DI schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
July完成签到 ,获得积分10
1秒前
xinlei2023发布了新的文献求助10
1秒前
1秒前
天地一沙鸥完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
jx完成签到 ,获得积分10
2秒前
3秒前
3秒前
4秒前
DS发布了新的文献求助50
5秒前
量子星尘发布了新的文献求助10
6秒前
清脆亿先发布了新的文献求助10
6秒前
李墩墩发布了新的文献求助10
7秒前
Musialucky完成签到,获得积分10
7秒前
池水发布了新的文献求助10
8秒前
8秒前
自然听兰完成签到,获得积分10
8秒前
9秒前
BowieHuang应助xinlei2023采纳,获得10
11秒前
12秒前
lalala发布了新的文献求助10
12秒前
科研通AI2S应助drughunter009采纳,获得10
14秒前
研友_VZG7GZ应助小竹子采纳,获得10
14秒前
大力发布了新的文献求助10
15秒前
15秒前
Orange应助苏一的小宝贝采纳,获得10
16秒前
白蓝发布了新的文献求助10
16秒前
天天快乐应助luo采纳,获得10
17秒前
AM关闭了AM文献求助
17秒前
A.....完成签到,获得积分10
17秒前
18秒前
18秒前
完美世界应助武武采纳,获得10
19秒前
岸蘅汀若完成签到,获得积分10
20秒前
研友_CCQ_M完成签到,获得积分10
20秒前
A.....发布了新的文献求助10
21秒前
百里伟祺完成签到 ,获得积分10
21秒前
冲冲冲应助sophy采纳,获得20
22秒前
丘比特应助RiziaJahanRiza采纳,获得10
22秒前
量子星尘发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728831
求助须知:如何正确求助?哪些是违规求助? 5314940
关于积分的说明 15315299
捐赠科研通 4875926
什么是DOI,文献DOI怎么找? 2619096
邀请新用户注册赠送积分活动 1568732
关于科研通互助平台的介绍 1525223