Natural Language Processing with Multitask Classification for Semantic Prediction of Risk-Handling Actions in Construction Contracts

任务(项目管理) 计算机科学 集合(抽象数据类型) 鉴定(生物学) 人工智能 多任务学习 机器学习 数据挖掘 自然语言处理 工程类 植物 系统工程 生物 程序设计语言
作者
Hieu Pham,SangUk Han
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:37 (6)
标识
DOI:10.1061/jccee5.cpeng-5218
摘要

Construction projects are capital-intensive and risk-prone, which can lead to serious claims and disputes. Thus, early identification and intervention of potential risks in contracts play significant roles in preventing conflicts in advance. However, traditional approaches are mostly limited to the simple task of predicting fragmentary information (e.g., a type of risk) from contracts. This study aims to predict comprehensive information to determine risk-handling actions by simultaneously performing three classification tasks (i.e., risk identification, risk allocation, and risk response). Specifically, the proposed multitask model is designed to integrate shared layers extracting general features for all three tasks with task-specific layers extracting relevant features of each individual task. Thus, this approach allows learning both common and specific features within a single network. For performance evaluation, experiments were performed on a data set of 2,586 contractual clauses from 10 construction projects, in which performance was compared with single-task models not only on the entire data set but also on the smaller number of data. The results revealed that the proposed model exhibited higher performance (mean weighted F1 score of 0.90 and accuracy of 0.78) than single-task models; furthermore, shared layers may better recognize hidden patterns for each classification task with the smaller data set (e.g., 0.04 higher mean F1 score and 0.09 higher accuracy for 250 samples). Thus, the proposed model can successfully implement three tasks simultaneously. When such information (e.g., risk types, responsible parties, and corresponding response strategies) is available in an early contract review, contracting parties shall determine specific risk-handling actions for proactive risk assessment and management in construction contracts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈哈呵完成签到,获得积分10
1秒前
潇洒的诗桃完成签到,获得积分0
1秒前
毛豆应助Pp采纳,获得10
1秒前
敬老院N号应助微笑的梦柏采纳,获得30
1秒前
朴实草莓完成签到,获得积分10
4秒前
标致幻然完成签到,获得积分10
4秒前
6秒前
漠枯发布了新的文献求助10
8秒前
8秒前
9秒前
无敌大流流完成签到,获得积分10
9秒前
沙沙完成签到 ,获得积分10
10秒前
Owen应助Tonsil01采纳,获得10
10秒前
11秒前
米修应助CHH采纳,获得30
11秒前
12秒前
星露谷农民完成签到,获得积分10
13秒前
13秒前
茹茹发布了新的文献求助10
13秒前
wlzl1988完成签到,获得积分10
14秒前
小马甲应助锁模采纳,获得10
14秒前
15秒前
starkisses完成签到,获得积分10
16秒前
顽石完成签到,获得积分10
17秒前
重城不见完成签到,获得积分10
17秒前
dxy完成签到,获得积分20
17秒前
17秒前
含蓄绿兰完成签到,获得积分10
19秒前
看不懂文献的进士完成签到,获得积分10
20秒前
要减肥的卷心菜完成签到,获得积分10
21秒前
21秒前
酷波er应助大山采纳,获得10
21秒前
lclz完成签到,获得积分10
22秒前
小新小新发布了新的文献求助10
23秒前
张张张xxx应助Tonsil01采纳,获得10
23秒前
wwwww发布了新的文献求助10
23秒前
nglmy77完成签到 ,获得积分10
25秒前
螳螂腿子完成签到,获得积分10
25秒前
ckxixi发布了新的文献求助10
25秒前
tinatian270完成签到,获得积分10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304627
求助须知:如何正确求助?哪些是违规求助? 2938626
关于积分的说明 8489303
捐赠科研通 2613106
什么是DOI,文献DOI怎么找? 1427111
科研通“疑难数据库(出版商)”最低求助积分说明 662895
邀请新用户注册赠送积分活动 647487