Natural Language Processing with Multitask Classification for Semantic Prediction of Risk-Handling Actions in Construction Contracts

任务(项目管理) 计算机科学 集合(抽象数据类型) 鉴定(生物学) 人工智能 多任务学习 机器学习 数据挖掘 自然语言处理 工程类 植物 系统工程 生物 程序设计语言
作者
Hieu Pham,SangUk Han
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:37 (6)
标识
DOI:10.1061/jccee5.cpeng-5218
摘要

Construction projects are capital-intensive and risk-prone, which can lead to serious claims and disputes. Thus, early identification and intervention of potential risks in contracts play significant roles in preventing conflicts in advance. However, traditional approaches are mostly limited to the simple task of predicting fragmentary information (e.g., a type of risk) from contracts. This study aims to predict comprehensive information to determine risk-handling actions by simultaneously performing three classification tasks (i.e., risk identification, risk allocation, and risk response). Specifically, the proposed multitask model is designed to integrate shared layers extracting general features for all three tasks with task-specific layers extracting relevant features of each individual task. Thus, this approach allows learning both common and specific features within a single network. For performance evaluation, experiments were performed on a data set of 2,586 contractual clauses from 10 construction projects, in which performance was compared with single-task models not only on the entire data set but also on the smaller number of data. The results revealed that the proposed model exhibited higher performance (mean weighted F1 score of 0.90 and accuracy of 0.78) than single-task models; furthermore, shared layers may better recognize hidden patterns for each classification task with the smaller data set (e.g., 0.04 higher mean F1 score and 0.09 higher accuracy for 250 samples). Thus, the proposed model can successfully implement three tasks simultaneously. When such information (e.g., risk types, responsible parties, and corresponding response strategies) is available in an early contract review, contracting parties shall determine specific risk-handling actions for proactive risk assessment and management in construction contracts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wildeager完成签到,获得积分10
刚刚
忧郁丹彤发布了新的文献求助10
刚刚
刚刚
JamesPei应助传统的怀梦采纳,获得10
1秒前
FL完成签到,获得积分10
4秒前
小神完成签到,获得积分10
4秒前
4秒前
5秒前
今后应助旋转的龙采纳,获得10
6秒前
Vi发布了新的文献求助10
6秒前
阳佟听荷发布了新的文献求助10
6秒前
8秒前
Nakacoke77发布了新的文献求助10
10秒前
10秒前
脑洞疼应助秣旎采纳,获得10
12秒前
风清扬发布了新的文献求助10
12秒前
bkagyin应助xiao142采纳,获得10
12秒前
积极老黑完成签到,获得积分10
12秒前
13秒前
plateauman发布了新的文献求助10
14秒前
聪慧语风发布了新的文献求助10
16秒前
16秒前
Jim发布了新的文献求助10
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
付思远完成签到 ,获得积分10
19秒前
19秒前
20秒前
聪慧语风完成签到,获得积分10
22秒前
qqqq发布了新的文献求助10
24秒前
25秒前
25秒前
wang完成签到,获得积分10
25秒前
xiao142发布了新的文献求助10
26秒前
26秒前
Owen应助msk采纳,获得10
27秒前
星辰大海应助OvO采纳,获得10
28秒前
29秒前
风清扬发布了新的文献求助10
30秒前
大模型应助跳跃忆灵采纳,获得10
30秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979662
求助须知:如何正确求助?哪些是违规求助? 3523636
关于积分的说明 11218202
捐赠科研通 3261164
什么是DOI,文献DOI怎么找? 1800473
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167