Natural Language Processing with Multitask Classification for Semantic Prediction of Risk-Handling Actions in Construction Contracts

任务(项目管理) 计算机科学 集合(抽象数据类型) 鉴定(生物学) 人工智能 多任务学习 机器学习 数据挖掘 自然语言处理 工程类 植物 系统工程 生物 程序设计语言
作者
Hieu Pham,SangUk Han
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:37 (6)
标识
DOI:10.1061/jccee5.cpeng-5218
摘要

Construction projects are capital-intensive and risk-prone, which can lead to serious claims and disputes. Thus, early identification and intervention of potential risks in contracts play significant roles in preventing conflicts in advance. However, traditional approaches are mostly limited to the simple task of predicting fragmentary information (e.g., a type of risk) from contracts. This study aims to predict comprehensive information to determine risk-handling actions by simultaneously performing three classification tasks (i.e., risk identification, risk allocation, and risk response). Specifically, the proposed multitask model is designed to integrate shared layers extracting general features for all three tasks with task-specific layers extracting relevant features of each individual task. Thus, this approach allows learning both common and specific features within a single network. For performance evaluation, experiments were performed on a data set of 2,586 contractual clauses from 10 construction projects, in which performance was compared with single-task models not only on the entire data set but also on the smaller number of data. The results revealed that the proposed model exhibited higher performance (mean weighted F1 score of 0.90 and accuracy of 0.78) than single-task models; furthermore, shared layers may better recognize hidden patterns for each classification task with the smaller data set (e.g., 0.04 higher mean F1 score and 0.09 higher accuracy for 250 samples). Thus, the proposed model can successfully implement three tasks simultaneously. When such information (e.g., risk types, responsible parties, and corresponding response strategies) is available in an early contract review, contracting parties shall determine specific risk-handling actions for proactive risk assessment and management in construction contracts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿怪完成签到,获得积分10
2秒前
2秒前
李健的小迷弟应助btmy16采纳,获得10
2秒前
Singularity应助ZHOUZHOU采纳,获得10
3秒前
3秒前
3秒前
吉吉完成签到 ,获得积分10
4秒前
SciGPT应助lili采纳,获得10
4秒前
5秒前
5秒前
river_121完成签到,获得积分10
5秒前
relevance完成签到,获得积分10
6秒前
思源应助白晨采纳,获得10
6秒前
骆123关注了科研通微信公众号
7秒前
7秒前
Owen应助dwj采纳,获得10
7秒前
所所应助会飞的猪采纳,获得10
8秒前
大知闲闲发布了新的文献求助10
9秒前
xiaowan完成签到,获得积分20
9秒前
小伍发布了新的文献求助10
10秒前
CC完成签到 ,获得积分10
11秒前
mouhao1发布了新的文献求助10
12秒前
Sega完成签到,获得积分10
12秒前
谢戴竹完成签到,获得积分20
12秒前
陈情完成签到,获得积分20
13秒前
量子星尘发布了新的文献求助150
14秒前
浮游应助ZHOUZHOU采纳,获得10
14秒前
15秒前
小二郎应助认真的不斜采纳,获得10
15秒前
熊11发布了新的文献求助10
15秒前
科研工头发布了新的文献求助10
17秒前
17秒前
17秒前
北陌完成签到,获得积分20
18秒前
浮游应助lyyy采纳,获得10
18秒前
18秒前
情怀应助Atticus采纳,获得10
18秒前
20秒前
泡沫完成签到,获得积分10
21秒前
TANG完成签到,获得积分10
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5143039
求助须知:如何正确求助?哪些是违规求助? 4341079
关于积分的说明 13519541
捐赠科研通 4181353
什么是DOI,文献DOI怎么找? 2292877
邀请新用户注册赠送积分活动 1293512
关于科研通互助平台的介绍 1236099