Natural Language Processing with Multitask Classification for Semantic Prediction of Risk-Handling Actions in Construction Contracts

任务(项目管理) 计算机科学 集合(抽象数据类型) 鉴定(生物学) 人工智能 多任务学习 机器学习 数据挖掘 自然语言处理 工程类 植物 系统工程 生物 程序设计语言
作者
Hieu Pham,SangUk Han
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:37 (6)
标识
DOI:10.1061/jccee5.cpeng-5218
摘要

Construction projects are capital-intensive and risk-prone, which can lead to serious claims and disputes. Thus, early identification and intervention of potential risks in contracts play significant roles in preventing conflicts in advance. However, traditional approaches are mostly limited to the simple task of predicting fragmentary information (e.g., a type of risk) from contracts. This study aims to predict comprehensive information to determine risk-handling actions by simultaneously performing three classification tasks (i.e., risk identification, risk allocation, and risk response). Specifically, the proposed multitask model is designed to integrate shared layers extracting general features for all three tasks with task-specific layers extracting relevant features of each individual task. Thus, this approach allows learning both common and specific features within a single network. For performance evaluation, experiments were performed on a data set of 2,586 contractual clauses from 10 construction projects, in which performance was compared with single-task models not only on the entire data set but also on the smaller number of data. The results revealed that the proposed model exhibited higher performance (mean weighted F1 score of 0.90 and accuracy of 0.78) than single-task models; furthermore, shared layers may better recognize hidden patterns for each classification task with the smaller data set (e.g., 0.04 higher mean F1 score and 0.09 higher accuracy for 250 samples). Thus, the proposed model can successfully implement three tasks simultaneously. When such information (e.g., risk types, responsible parties, and corresponding response strategies) is available in an early contract review, contracting parties shall determine specific risk-handling actions for proactive risk assessment and management in construction contracts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
坦率灵槐发布了新的文献求助30
1秒前
火焰迷踪发布了新的文献求助10
2秒前
5秒前
鲁丁丁发布了新的文献求助10
6秒前
sun发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
清爽的又夏完成签到,获得积分10
8秒前
Wenjian7761完成签到,获得积分10
8秒前
斯文败类应助momo采纳,获得30
9秒前
茶柠完成签到 ,获得积分10
9秒前
tartyang完成签到 ,获得积分10
10秒前
千风发布了新的文献求助10
12秒前
12秒前
QMZ发布了新的文献求助10
13秒前
忞航完成签到 ,获得积分10
13秒前
15秒前
欢喜烧鹅完成签到,获得积分10
16秒前
18秒前
18秒前
纯真的初阳完成签到,获得积分10
19秒前
22秒前
小小发布了新的文献求助10
24秒前
左手的左手是左手完成签到,获得积分10
25秒前
麻辣烫小姐完成签到,获得积分10
26秒前
26秒前
Sky完成签到,获得积分10
27秒前
WittingGU完成签到,获得积分0
27秒前
29秒前
29秒前
香蕉觅云应助小巧秋柔采纳,获得10
29秒前
啊嘞嘞完成签到,获得积分10
30秒前
30秒前
慕青应助小刘采纳,获得10
31秒前
32秒前
菠萝完成签到 ,获得积分0
33秒前
34秒前
无为发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5309724
求助须知:如何正确求助?哪些是违规求助? 4454247
关于积分的说明 13859535
捐赠科研通 4342205
什么是DOI,文献DOI怎么找? 2384385
邀请新用户注册赠送积分活动 1378844
关于科研通互助平台的介绍 1347021