亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Natural Language Processing with Multitask Classification for Semantic Prediction of Risk-Handling Actions in Construction Contracts

任务(项目管理) 计算机科学 集合(抽象数据类型) 鉴定(生物学) 人工智能 多任务学习 机器学习 数据挖掘 自然语言处理 工程类 植物 系统工程 生物 程序设计语言
作者
Hieu Pham,SangUk Han
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:37 (6)
标识
DOI:10.1061/jccee5.cpeng-5218
摘要

Construction projects are capital-intensive and risk-prone, which can lead to serious claims and disputes. Thus, early identification and intervention of potential risks in contracts play significant roles in preventing conflicts in advance. However, traditional approaches are mostly limited to the simple task of predicting fragmentary information (e.g., a type of risk) from contracts. This study aims to predict comprehensive information to determine risk-handling actions by simultaneously performing three classification tasks (i.e., risk identification, risk allocation, and risk response). Specifically, the proposed multitask model is designed to integrate shared layers extracting general features for all three tasks with task-specific layers extracting relevant features of each individual task. Thus, this approach allows learning both common and specific features within a single network. For performance evaluation, experiments were performed on a data set of 2,586 contractual clauses from 10 construction projects, in which performance was compared with single-task models not only on the entire data set but also on the smaller number of data. The results revealed that the proposed model exhibited higher performance (mean weighted F1 score of 0.90 and accuracy of 0.78) than single-task models; furthermore, shared layers may better recognize hidden patterns for each classification task with the smaller data set (e.g., 0.04 higher mean F1 score and 0.09 higher accuracy for 250 samples). Thus, the proposed model can successfully implement three tasks simultaneously. When such information (e.g., risk types, responsible parties, and corresponding response strategies) is available in an early contract review, contracting parties shall determine specific risk-handling actions for proactive risk assessment and management in construction contracts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
花花发布了新的文献求助10
4秒前
NexusExplorer应助一休采纳,获得10
4秒前
5秒前
10秒前
花花完成签到,获得积分20
10秒前
炙热雅琴发布了新的文献求助10
11秒前
Lucas应助莫问题采纳,获得10
12秒前
13秒前
14秒前
chenzheng完成签到 ,获得积分10
15秒前
dzll完成签到,获得积分10
17秒前
fybd88完成签到,获得积分10
18秒前
万能图书馆应助山茱萸采纳,获得10
23秒前
23秒前
莫问题发布了新的文献求助10
29秒前
无辜的傲安完成签到,获得积分20
30秒前
31秒前
39秒前
勤奋尔冬完成签到 ,获得积分10
41秒前
47秒前
休斯顿完成签到,获得积分10
48秒前
58秒前
33完成签到 ,获得积分10
59秒前
飞常爱你哦完成签到 ,获得积分20
59秒前
斯文败类应助FATFAT采纳,获得10
1分钟前
1分钟前
1分钟前
Dec发布了新的文献求助10
1分钟前
xiaoyuyuyu完成签到 ,获得积分10
1分钟前
1分钟前
matrixu完成签到,获得积分10
1分钟前
莫问题完成签到,获得积分10
1分钟前
mushroom完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
搜集达人应助xjz采纳,获得10
1分钟前
一休发布了新的文献求助10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407675
求助须知:如何正确求助?哪些是违规求助? 4525191
关于积分的说明 14101408
捐赠科研通 4439018
什么是DOI,文献DOI怎么找? 2436558
邀请新用户注册赠送积分活动 1428528
关于科研通互助平台的介绍 1406604