Machine learning techniques for periodontitis and dental caries detection: A narrative review

牙周炎 牙科 医学 叙述性评论 牙科实习 牙周检查 人工智能 梅德林 计算机科学 口腔正畸科 重症监护医学 政治学 法学
作者
R. Radha,B. S. Raghavendra,B.V Subhash,Jeny Rajan,A. V. Narasimhadhan
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:178: 105170-105170 被引量:8
标识
DOI:10.1016/j.ijmedinf.2023.105170
摘要

In recent years, periodontitis, and dental caries have become common in humans and need to be diagnosed in the early stage to prevent severe complications and tooth loss. These dental issues are diagnosed by visual inspection, measuring pocket probing depth, and radiographs findings from experienced dentists. Though a glut of machine learning (ML) algorithms has been proposed for the automated detection of periodontitis, and dental caries, determining which ML techniques are suitable for clinical practice remains under debate. This review aims to identify the research challenges by analyzing the limitations of current methods and how to address these to obtain robust systems suitable for clinical use or point-of-care testing. An extensive search of the literature published from 2015 to 2022 written in English, related to the subject of study was sought by searching the electronic databases: PubMed, Institute of Electrical and Electronics Engineers (IEEE) Xplore, and ScienceDirect. The initial electronic search yielded 1743 titles, and 55 studies were eventually included based on the selection criteria adopted in this review. Studies selected were on ML applications for the automatic detection of periodontitis and dental caries and related dental issues: Apical lessons, Periodontal bone loss, and Vertical root fracture. While most of the ML-based studies use radiograph images for the detection of periodontitis and dental caries, few pieces of the literature revealed that good diagnostic accuracy could be achieved by training the ML model even with mobile photos representing the images of dental issues. Nowadays smartphones are used in every sector for different applications. Training the ML model with as many images of dental issues captured by the smartphone can achieve good accuracy, reduce the cost of clinical diagnosis, and provide user interaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MMeow完成签到 ,获得积分10
1秒前
1秒前
2秒前
qingsuifengqu发布了新的文献求助10
2秒前
joye完成签到,获得积分10
3秒前
我不是一个大学生应助zzz采纳,获得20
3秒前
Zx完成签到,获得积分10
5秒前
5秒前
5秒前
yangkeke完成签到,获得积分20
5秒前
酷酷幻梦完成签到,获得积分10
7秒前
wanci应助汪汪采纳,获得10
7秒前
我是老大应助娟娟采纳,获得10
7秒前
8秒前
害羞翠芙关注了科研通微信公众号
9秒前
9秒前
小白杨完成签到,获得积分10
11秒前
木头杨发布了新的文献求助10
11秒前
在水一方应助悠然采纳,获得10
12秒前
zyx发布了新的文献求助30
12秒前
林源枫完成签到,获得积分10
12秒前
damieob发布了新的文献求助10
16秒前
关七应助开朗满天采纳,获得10
16秒前
称心不尤发布了新的文献求助10
17秒前
tan完成签到 ,获得积分10
17秒前
18秒前
19秒前
21秒前
Ll应助zzz采纳,获得10
22秒前
Zhiyan完成签到 ,获得积分10
23秒前
23秒前
老盖发布了新的文献求助10
23秒前
都是发布了新的文献求助10
23秒前
damieob完成签到,获得积分10
24秒前
lxw完成签到,获得积分10
24秒前
活泼忆丹发布了新的文献求助10
25秒前
黎黎原上草完成签到,获得积分10
25秒前
zyx完成签到,获得积分10
25秒前
27秒前
娟娟发布了新的文献求助10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136060
求助须知:如何正确求助?哪些是违规求助? 2786881
关于积分的说明 7779829
捐赠科研通 2443052
什么是DOI,文献DOI怎么找? 1298859
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870