作者
Zikai Fan,Xiaoyun Xu,Rong Wang,Zhi Meng,Luochun Wang,Xinde Cao,Ziyang Lou
摘要
It is very important to understand the distribution and sources of typical potentially toxic elements in industrial sites in order to provide essential information for risk assessment and the process of land reclamation selection. Here, around 29 soil column samples of 6 m depth were collected using a geoprobe drill rig from a typical electroplating site located in the Yangtze River Delta, which has been operating for more than 20 years. Analysis in the laboratory, including measurement of elemental concentrations using ICP-OES, was carried out. The distribution and sources of typical heavy metals were investigated, and correlated risks were assessed using positive matrix factorization. As, Pb, and Cr were the dominant heavy metal pollutants, with ranges of 3.20–154 mg/kg, 13.9–9271 mg/kg, and 27.2–2970 mg/kg, which were 1.28 times, 11.6 times, and 3.71 times higher than the Chinese national standard, respectively. Pb was found to be accumulated in the top 0–2 m and As in the top 0–3 m due to the presence of a typical clay and loamy soil. Additionally, Cr could be transferred into the groundwater, with a maximum concentration of 497 mg/kg, due to frequent interaction between the groundwater and soil. A PMF model showed that the dominant sources of pollution were the electroplating process section, the glass melting process section, the production process section, and the electroplating wastewater. Pb, As, and Cr were mainly generated from the industrial production process, glass melting process, and electroplating process. The pH and CEC appeared to influence the chemical speciation greatly, with higher content observed bound to carbonates as a result of exchange processes in the case of high CEC and low pH conditions. Both the Pb and As observed could contribute to non-carcinogenic and carcinogenic health risks, respectively, based on PMF-HRA analysis, which should receive greater attention in risk management strategies for polluted sites. Identification of the main sources of heavy metals in a site could provide a basis for potential land reclamation.