Ensemble models based on CNN and LSTM for dropout prediction in MOOC

计算机科学 辍学(神经网络) 过度拟合 人工智能 机器学习 卷积神经网络 集成学习 集合预报 人工神经网络
作者
K Shah Talebi,Zeinab Torabi,Negin Daneshpour
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:235: 121187-121187 被引量:3
标识
DOI:10.1016/j.eswa.2023.121187
摘要

Massive Open Online Courses (MOOCs) have gained a lot of popularity recently. Despite the large number of students enrolled in these courses, a large percentage drop out. Due to this, predicting student dropout has taken on fundamental importance in this area. Predicting dropout early allows course organizers and educators to intervene and provide targeted support to at-risk students. They can offer additional resources, personalized assistance, or interventions tailored to address specific challenges faced by students, increasing their chances of successful course completion. This study first pre-processes the dataset to create a thirty-day correlation matrix for each learner, enabling early dropout prediction by the end of the first week. Then, six new models have been proposed using ensemble classification techniques with Convolutional Neural Network (CNN) and Long-Short Term Memory (LSTM). CNN is used for automatic feature extraction, while LSTM considers the time series aspect of the data to improve early prediction performance. As ensemble classifiers can reduce the variance of prediction errors, using ensemble classifiers in addition to neural networks can enhance accuracy and F1 score without overfitting. The application of these techniques results in more accurate week-by-week dropout prediction. The experimental results on the KDD Cup 2015 dataset (representing XuetangX, a MOOC platform in China with 39 courses, 79,186 students, and 120,542 registered students, with 8,157,277 records collected over 30 days) show that all Bagging models improve performance of their base models. In one of the proposed models (Bagging LSTM-LSTM), at the end of the fifth week, the accuracy reached 94%, and the average accuracy reached 91%. Also, precision and recall reached an average of 92%, and F1 score reached 98%, which shows a significant improvement compared to previous researches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昂叔的头发丝儿完成签到,获得积分10
刚刚
1秒前
羽雨完成签到,获得积分10
1秒前
完美世界应助仁爱晓瑶采纳,获得10
1秒前
1秒前
定西发布了新的文献求助10
2秒前
2秒前
kento应助Ken921319005采纳,获得100
3秒前
程大学发布了新的文献求助10
3秒前
3秒前
羽雨发布了新的文献求助10
4秒前
塵亦发布了新的文献求助10
5秒前
7秒前
7秒前
科研通AI2S应助zxvcbnm采纳,获得10
8秒前
月下荷花完成签到,获得积分10
8秒前
可爱语堂发布了新的文献求助10
8秒前
香蕉觅云应助踏实语蓉采纳,获得10
9秒前
绝版的飞完成签到,获得积分20
9秒前
科研小白完成签到 ,获得积分10
9秒前
塵亦完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
XYZzzz完成签到,获得积分10
11秒前
123完成签到,获得积分20
11秒前
12秒前
PSCs发布了新的文献求助10
13秒前
深情芷完成签到,获得积分10
13秒前
852应助小牛牛采纳,获得10
13秒前
清新的达发布了新的文献求助30
14秒前
wanci应助XYZzzz采纳,获得10
15秒前
lvv发布了新的文献求助10
15秒前
大方泥猴桃完成签到,获得积分10
16秒前
仁爱晓瑶发布了新的文献求助10
16秒前
17秒前
bkagyin应助包容的剑采纳,获得10
17秒前
欧忒耳佩发布了新的文献求助10
17秒前
赵西里完成签到,获得积分10
20秒前
Lily发布了新的文献求助30
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135145
求助须知:如何正确求助?哪些是违规求助? 2786103
关于积分的说明 7775648
捐赠科研通 2441991
什么是DOI,文献DOI怎么找? 1298332
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600845