DNA-Depth: A Frequency-Based Day-Night Adaptation for Monocular Depth Estimation

单眼 计算机科学 人工智能 计算机视觉 适应(眼睛) 激光雷达 光流 遥感 光学 地理 图像(数学) 物理
作者
M. Shen,Z. Wang,Shuai Su,Chengju Liu,Qijun Chen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12
标识
DOI:10.1109/tim.2023.3322498
摘要

Autonomous driving necessitates ensuring safety across diverse environments, particularly in challenging conditions like low-light or nighttime scenarios. As a fundamental task in autonomous driving, monocular depth estimation has garnered significant attention and discussion. However, current monocular depth estimation methods primarily rely on daytime images, which limits their applicability to nighttime scenarios due to the substantial domain shift between daytime and nighttime styles. In this paper, we propose a novel Day-Night Adaptation method (DNA-Depth) to realize monocular depth estimation in a night environment. Specifically, we simply use Fourier Transform to address the domain alignment problem. Our method does not require extra adversarial optimization but is quite effective. The simplicity of our method makes it easy to guide day-to-night domains. To the best of our knowledge, we are the first to utilize fast Fourier transformation for nighttime monocular depth estimation. Furthermore, to alleviate the problem of mobile light sources, we utilize an unsupervised joint learning framework for depth, optical flow, and ego-motion estimation in an end-to-end manner, which are coupled by 3D geometry cues. Our model can simultaneously reason about the camera motion, the depth of a static background, and the optical flow of moving objects. Extensive experiments on the Oxford RobotCar, nuScenes, and Synthia datasets demonstrate the accuracy and precision of our method by comparing it with those state-of-the-art algorithms in depth estimation, both qualitatively and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助wr1919采纳,获得30
2秒前
善学以致用应助wuxidixi采纳,获得10
4秒前
kento发布了新的文献求助50
4秒前
哪吒之魔童闹海完成签到,获得积分10
4秒前
田様应助宋宋采纳,获得10
9秒前
11秒前
2541完成签到,获得积分10
12秒前
12秒前
qin发布了新的文献求助10
12秒前
乐观完成签到,获得积分10
15秒前
2541发布了新的文献求助10
16秒前
ZH发布了新的文献求助10
16秒前
tyh完成签到,获得积分10
17秒前
20秒前
璃光浮月完成签到 ,获得积分10
20秒前
21秒前
21秒前
kento完成签到,获得积分0
21秒前
22秒前
happy发布了新的文献求助50
22秒前
22秒前
传奇3应助辽阳太子采纳,获得10
23秒前
23秒前
23秒前
wy.he应助泡泡采纳,获得10
24秒前
偏偏海完成签到,获得积分10
24秒前
24秒前
bkagyin应助abcd采纳,获得10
24秒前
24秒前
24秒前
标致靖仇发布了新的文献求助10
25秒前
25秒前
小美发布了新的文献求助10
25秒前
25秒前
11完成签到,获得积分10
25秒前
26秒前
26秒前
26秒前
26秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966796
求助须知:如何正确求助?哪些是违规求助? 3512322
关于积分的说明 11162614
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793730
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432