DNA-Depth: A Frequency-Based Day-Night Adaptation for Monocular Depth Estimation

单眼 计算机科学 人工智能 计算机视觉 适应(眼睛) 激光雷达 光流 遥感 光学 地理 图像(数学) 物理
作者
M. Shen,Z. Wang,Shuai Su,Chengju Liu,Qijun Chen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12
标识
DOI:10.1109/tim.2023.3322498
摘要

Autonomous driving necessitates ensuring safety across diverse environments, particularly in challenging conditions like low-light or nighttime scenarios. As a fundamental task in autonomous driving, monocular depth estimation has garnered significant attention and discussion. However, current monocular depth estimation methods primarily rely on daytime images, which limits their applicability to nighttime scenarios due to the substantial domain shift between daytime and nighttime styles. In this paper, we propose a novel Day-Night Adaptation method (DNA-Depth) to realize monocular depth estimation in a night environment. Specifically, we simply use Fourier Transform to address the domain alignment problem. Our method does not require extra adversarial optimization but is quite effective. The simplicity of our method makes it easy to guide day-to-night domains. To the best of our knowledge, we are the first to utilize fast Fourier transformation for nighttime monocular depth estimation. Furthermore, to alleviate the problem of mobile light sources, we utilize an unsupervised joint learning framework for depth, optical flow, and ego-motion estimation in an end-to-end manner, which are coupled by 3D geometry cues. Our model can simultaneously reason about the camera motion, the depth of a static background, and the optical flow of moving objects. Extensive experiments on the Oxford RobotCar, nuScenes, and Synthia datasets demonstrate the accuracy and precision of our method by comparing it with those state-of-the-art algorithms in depth estimation, both qualitatively and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
myt应助Hou采纳,获得10
1秒前
1秒前
传统的戎发布了新的文献求助10
2秒前
2秒前
陈亦可完成签到,获得积分10
3秒前
4秒前
大海完成签到 ,获得积分10
4秒前
5秒前
搜集达人应助蛋黄苏采纳,获得10
7秒前
逆旅发布了新的文献求助10
7秒前
梨凉完成签到,获得积分10
7秒前
852应助一进实验室就犯困采纳,获得10
8秒前
少堂发布了新的文献求助10
8秒前
9秒前
9秒前
陈cxz完成签到 ,获得积分10
11秒前
DE2022发布了新的文献求助10
11秒前
11秒前
12秒前
xuex1完成签到,获得积分10
13秒前
魏留完成签到,获得积分20
14秒前
14秒前
任性起眸发布了新的文献求助10
14秒前
逆旅完成签到,获得积分10
15秒前
15秒前
宋子墨发布了新的文献求助10
15秒前
15秒前
华仔应助潇洒的白昼采纳,获得10
15秒前
AmyDong发布了新的文献求助10
16秒前
方赫然应助雨诺采纳,获得30
16秒前
科研通AI2S应助小米儿采纳,获得10
16秒前
人群是那么像羊群完成签到 ,获得积分10
16秒前
隐形曼青应助bgbgbg采纳,获得10
17秒前
17秒前
18秒前
19秒前
难遇发布了新的文献求助10
20秒前
超级白昼发布了新的文献求助10
21秒前
我是老大应助chenn采纳,获得10
21秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233445
求助须知:如何正确求助?哪些是违规求助? 2879969
关于积分的说明 8213423
捐赠科研通 2547415
什么是DOI,文献DOI怎么找? 1376927
科研通“疑难数据库(出版商)”最低求助积分说明 647713
邀请新用户注册赠送积分活动 623150