PREDICTIVE MODELING AND OPTIMIZATION OF CUTTING PARAMETERS IN HIGH SPEED HARDENED TURNING OF AISI D2 STEEL USING RSM, ANN AND DESIRABILITY FUNCTION

田口方法 平均绝对百分比误差 数学 响应面法 均方误差 表面粗糙度 机械加工 碳化物 功能(生物学) 决定系数 实验设计 刀具磨损 材料科学 机械工程 统计 工程类 冶金 复合材料 进化生物学 生物
作者
HAMAMA MEBREK,Salah Mansouri,Youssef Touggui,Hacene Ameddah,Mohamed Athmane Yallese,Hadj M. Benia
出处
期刊:Surface Review and Letters [World Scientific]
卷期号:31 (05) 被引量:1
标识
DOI:10.1142/s0218625x24500367
摘要

High speed machining (HSM) is an attractive process for numerous applications due to its potential to increase production rates, reduce lead times, lower costs, and enhance part quality. In this study, high-speed turning operations on AISI D2 steel using a coated carbide cutting tool under dry conditions were conducted. The cutting parameters examined in this investigation were Vc, [Formula: see text], and ap, while the outputs measured were surface roughness (Ra), cutting temperature ([Formula: see text]), and flank wear (VB). To obtain reliable and accurate results, a Taguchi L27 orthogonal array for the 27 experimental runs was employed as well as analysis of variance (ANOVA), response surface methodology (RSM), and artificial neural network (ANN) to develop a constitutive relationship between prediction responses and the cutting parameters. The ANOVA results showed that Vc had a significant effect on [Formula: see text] (36.81%) and VB (27.58%), while [Formula: see text] had a considerable influence on Ra (24.21%). Additionally, nonlinear prediction models were created for each measured output and their accuracy was evaluated using three statistical indices: coefficient of determination ([Formula: see text] 2 ), mean absolute percentage error (MAPE), and root mean square error (RMSE). Finally, multi-objective optimization was successfully carried out using the desirability function (DF) approach to propose an optimal set of cutting parameters that simultaneously minimized Ra, [Formula: see text], and VB. The optimized cutting parameters were Vc = 477.28 m/min, [Formula: see text] = 0.08 rev/min, and ap = 0.8 mm, resulting in Ra = 1.23 [Formula: see text]m, [Formula: see text] = [Formula: see text]C, and VB = 0.049 mm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Deathroid完成签到,获得积分10
刚刚
时荒发布了新的文献求助10
刚刚
小米完成签到,获得积分10
刚刚
1秒前
灵巧的斓完成签到,获得积分10
1秒前
2秒前
Aryac完成签到,获得积分10
3秒前
3秒前
科研通AI2S应助Ma采纳,获得10
3秒前
遲悟篤行完成签到,获得积分10
4秒前
尹雪儿完成签到,获得积分10
4秒前
充电宝应助qq采纳,获得10
5秒前
AhhHuang应助容若采纳,获得10
6秒前
6秒前
科目三应助炙热的平灵采纳,获得10
6秒前
liuanqi发布了新的文献求助10
6秒前
7秒前
7秒前
科研通AI6应助文乐采纳,获得10
7秒前
安安安完成签到,获得积分10
8秒前
8秒前
Unicorn发布了新的文献求助10
8秒前
斯文败类应助清浅采纳,获得30
8秒前
8秒前
小二郎应助yyj采纳,获得10
9秒前
Aryac发布了新的文献求助10
9秒前
9秒前
10秒前
Pothos应助YAN采纳,获得30
11秒前
gzhoax应助山山而川采纳,获得30
11秒前
科研通AI6应助liam采纳,获得10
11秒前
烟里戏发布了新的文献求助10
11秒前
沙糖桔完成签到,获得积分10
11秒前
12秒前
Sunday给Sunday的求助进行了留言
12秒前
12秒前
ppy发布了新的文献求助10
12秒前
Chris发布了新的文献求助30
12秒前
嬴炎发布了新的文献求助10
12秒前
成就雨筠完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667262
求助须知:如何正确求助?哪些是违规求助? 4884975
关于积分的说明 15119469
捐赠科研通 4826112
什么是DOI,文献DOI怎么找? 2583765
邀请新用户注册赠送积分活动 1537901
关于科研通互助平台的介绍 1496041