Multi-parametric MRI-based machine learning model for prediction of WHO grading in patients with meningiomas

列线图 医学 脑膜瘤 神经组阅片室 放射科 逻辑回归 无线电技术 分级(工程) 核医学 神经学 内科学 精神科 工程类 土木工程
作者
Zhen Zhao,Chuansheng Nie,Lei Zhao,Dongdong Xiao,Jianglin Zheng,Hao Zhang,Peng-Fei Yan,Xiaobing Jiang,Hongyang Zhao
出处
期刊:European Radiology [Springer Nature]
卷期号:34 (4): 2468-2479 被引量:12
标识
DOI:10.1007/s00330-023-10252-8
摘要

Abstract Objective The purpose of this study was to develop and validate a nomogram combined multiparametric MRI and clinical indicators for identifying the WHO grade of meningioma. Materials and methods Five hundred and sixty-eight patients were included in this study, who were diagnosed pathologically as having meningiomas. Firstly, radiomics features were extracted from CE-T1, T2, and 1-cm-thick tumor-to-brain interface (BTI) images. Then, difference analysis and the least absolute shrinkage and selection operator were orderly used to select the most representative features. Next, the support vector machine algorithm was conducted to predict the WHO grade of meningioma. Furthermore, a nomogram incorporated radiomics features and valuable clinical indicators was constructed by logistic regression. The performance of the nomogram was assessed by calibration and clinical effectiveness, as well as internal validation. Results Peritumoral edema volume and gender are independent risk factors for predicting meningioma grade. The multiparametric MRI features incorporating CE-T1, T2, and BTI features showed the higher performance for prediction of meningioma grade with a pooled AUC = 0.885 (95% CI, 0.821–0.946) and 0.860 (95% CI, 0.788–0.923) in the training and test groups, respectively. Then, a nomogram with a pooled AUC = 0.912 (95% CI, 0.876–0.961), combined radiomics score, peritumoral edema volume, and gender improved diagnostic performance compared to radiomics model or clinical model and showed good calibration as the true results. Moreover, decision curve analysis demonstrated satisfactory clinical effectiveness of the proposed nomogram. Conclusions A novel nomogram is simple yet effective in differentiating WHO grades of meningioma and thus can be used in patients with meningiomas. Clinical relevance statement We proposed a nomogram that included clinical indicators and multi-parameter radiomics features, which can accurately, objectively, and non-invasively differentiate WHO grading of meningioma and thus can be used in clinical work. Key Points • The study combined radiomics features and clinical indicators for objectively predicting the meningioma grade . • The model with CE-T1 + T2 + brain-to-tumor interface features demonstrated the best predictive performance by investigating seven different radiomics models . • The nomogram potentially has clinical applications in distinguishing high-grade and low-grade meningiomas .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰完成签到,获得积分10
刚刚
Mera完成签到,获得积分10
1秒前
酷炫无声完成签到 ,获得积分10
1秒前
1秒前
skysleeper完成签到,获得积分10
1秒前
犹豫的若完成签到,获得积分10
2秒前
BOLIN完成签到,获得积分10
2秒前
3秒前
做实验太菜完成签到,获得积分10
3秒前
YUYUYU完成签到 ,获得积分10
3秒前
natsu401完成签到 ,获得积分10
4秒前
科研通AI2S应助可乐要加冰采纳,获得30
5秒前
5秒前
康康完成签到,获得积分10
6秒前
嘎嘎嘎完成签到,获得积分10
7秒前
ColdPomelo完成签到,获得积分10
7秒前
体贴薯片完成签到,获得积分10
8秒前
8秒前
简简单单完成签到,获得积分10
9秒前
9秒前
10秒前
包包琪完成签到 ,获得积分10
10秒前
感性的道之完成签到 ,获得积分10
10秒前
lucky发布了新的文献求助10
11秒前
jcduoduo完成签到,获得积分10
12秒前
Notorious应助Jenny采纳,获得30
12秒前
过时的白云完成签到 ,获得积分10
13秒前
月月鸟完成签到 ,获得积分10
13秒前
科研小农民完成签到,获得积分10
13秒前
嘻嘻完成签到,获得积分10
13秒前
一个大花瓶完成签到 ,获得积分10
13秒前
Darsine完成签到,获得积分10
13秒前
Orange应助帅哥吴克采纳,获得10
13秒前
14秒前
Sydlxy发布了新的文献求助10
14秒前
单纯行天发布了新的文献求助10
14秒前
zs完成签到,获得积分10
14秒前
强健的梦蕊完成签到 ,获得积分10
16秒前
16秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3550506
求助须知:如何正确求助?哪些是违规求助? 3126751
关于积分的说明 9370254
捐赠科研通 2825915
什么是DOI,文献DOI怎么找? 1553482
邀请新用户注册赠送积分活动 724886
科研通“疑难数据库(出版商)”最低求助积分说明 714483