A real-time automatic fire emergency evacuation route selection model based on decision-making processes of pedestrians

更安全的 马尔可夫决策过程 计算机科学 过程(计算) 行人 雷达 动作选择 运筹学 强化学习 线路规划 运输工程 模拟 工程类 人工智能 马尔可夫过程 计算机安全 电信 统计 数学 操作系统 神经科学 感知 生物
作者
Ping Huang,Xiajun Lin,Chunxiang Liu,Libi Fu,Longxing Yu
出处
期刊:Safety Science [Elsevier]
卷期号:169: 106332-106332 被引量:7
标识
DOI:10.1016/j.ssci.2023.106332
摘要

After a fire occurs, it is imperative that people in danger evacuate as soon as possible. However, the current emergency plan based on the pre-established static exiting route is unable to considering the real-time fire scenario. In addition, the selection of evacuation routes significantly relies on the decision-maker's experiences. These issues seriously affect evacuation efficiency, decreasing the likelihood of survival. This paper developed an effective real-time evacuation guidance method that can automatically select the evacuation route in accordance with real-time fire scenarios. The model is established based on the on-policy learning algorithm SARSA (State–action–reward–state–action), an algorithm for learning a Markov decision process policy, which could mimic the decision-making of pedestrian behaviors in an emergency. In addition, two types of radar (exit radar and fire radar) are introduced into the SARSA algorithm to facilitate the wayfinding process, which formulated the so-called Radar-assisted SARSA (RSARSA). The results have shown that RSARSA can swiftly decide a safer evacuation route for pedestrians or crowd at arbitrary location. The convergence time of initial successful route planning is between 0.05 and 4.5 s under the tests in this paper. The evacuation route determined by this algorithm can well consider the fire, and timely avoid routes with potential dangerous. Moreover, RSARSA can flexibly respond to different fires under various heat release rates and development speeds. By applying this technology, fire evacuation can be guided by routes that are more attuned to the mindset of pedestrians. It can provide a good basis for route selection of crowd evacuation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dreamlightzy应助小膘膘采纳,获得10
刚刚
Winy完成签到,获得积分10
刚刚
1秒前
fff发布了新的文献求助30
1秒前
1秒前
2秒前
玛卡完成签到,获得积分10
2秒前
2秒前
2秒前
向磊发布了新的文献求助10
2秒前
祁夫人完成签到,获得积分10
3秒前
浮游应助老实的鞋垫采纳,获得10
4秒前
小杭76应助缥缈的水儿采纳,获得10
4秒前
4秒前
4秒前
5秒前
chenqi发布了新的文献求助10
5秒前
6秒前
李健应助Kyle采纳,获得10
6秒前
zhangzhang完成签到,获得积分10
6秒前
茶卡盐仓完成签到,获得积分10
6秒前
自分目覚发布了新的文献求助10
7秒前
8秒前
大鱼吃小鱼完成签到,获得积分10
8秒前
nnnnn发布了新的文献求助10
9秒前
笑点低的幻灵完成签到,获得积分20
9秒前
9秒前
angelinazh完成签到,获得积分10
10秒前
lilili发布了新的文献求助10
11秒前
11秒前
11秒前
工科小白完成签到 ,获得积分10
12秒前
hhhh完成签到 ,获得积分10
12秒前
Miracle完成签到,获得积分10
12秒前
牧妙芹发布了新的文献求助30
13秒前
13秒前
Ava应助dzhe采纳,获得10
13秒前
乐观大白菜真实的钥匙完成签到,获得积分20
13秒前
ddd完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5317139
求助须知:如何正确求助?哪些是违规求助? 4459587
关于积分的说明 13875850
捐赠科研通 4349563
什么是DOI,文献DOI怎么找? 2388945
邀请新用户注册赠送积分活动 1383134
关于科研通互助平台的介绍 1352384