A real-time automatic fire emergency evacuation route selection model based on decision-making processes of pedestrians

更安全的 马尔可夫决策过程 计算机科学 过程(计算) 行人 雷达 动作选择 运筹学 强化学习 线路规划 运输工程 模拟 工程类 人工智能 马尔可夫过程 计算机安全 统计 神经科学 操作系统 生物 电信 数学 感知
作者
Ping Huang,Xiajun Lin,Chunxiang Liu,Libi Fu,Longxing Yu
出处
期刊:Safety Science [Elsevier BV]
卷期号:169: 106332-106332 被引量:7
标识
DOI:10.1016/j.ssci.2023.106332
摘要

After a fire occurs, it is imperative that people in danger evacuate as soon as possible. However, the current emergency plan based on the pre-established static exiting route is unable to considering the real-time fire scenario. In addition, the selection of evacuation routes significantly relies on the decision-maker's experiences. These issues seriously affect evacuation efficiency, decreasing the likelihood of survival. This paper developed an effective real-time evacuation guidance method that can automatically select the evacuation route in accordance with real-time fire scenarios. The model is established based on the on-policy learning algorithm SARSA (State–action–reward–state–action), an algorithm for learning a Markov decision process policy, which could mimic the decision-making of pedestrian behaviors in an emergency. In addition, two types of radar (exit radar and fire radar) are introduced into the SARSA algorithm to facilitate the wayfinding process, which formulated the so-called Radar-assisted SARSA (RSARSA). The results have shown that RSARSA can swiftly decide a safer evacuation route for pedestrians or crowd at arbitrary location. The convergence time of initial successful route planning is between 0.05 and 4.5 s under the tests in this paper. The evacuation route determined by this algorithm can well consider the fire, and timely avoid routes with potential dangerous. Moreover, RSARSA can flexibly respond to different fires under various heat release rates and development speeds. By applying this technology, fire evacuation can be guided by routes that are more attuned to the mindset of pedestrians. It can provide a good basis for route selection of crowd evacuation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Thor发布了新的文献求助10
1秒前
1秒前
1秒前
晨晞完成签到 ,获得积分10
1秒前
1秒前
可爱的以松完成签到,获得积分10
1秒前
呆萌滑板发布了新的文献求助10
1秒前
赘婿应助Santiana采纳,获得10
2秒前
唯为完成签到,获得积分10
2秒前
阿瑶与呆呆完成签到,获得积分10
4秒前
浩洁完成签到,获得积分10
5秒前
翟大有完成签到 ,获得积分0
5秒前
5秒前
咖飞发布了新的文献求助10
5秒前
Crush发布了新的文献求助10
6秒前
Little2发布了新的文献求助10
6秒前
心静听炊烟完成签到 ,获得积分10
6秒前
6秒前
chenhunhun完成签到,获得积分10
6秒前
Owen应助神勇的含羞草采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
不远完成签到,获得积分10
7秒前
8秒前
辰寒云阳完成签到,获得积分10
8秒前
9秒前
yuky完成签到 ,获得积分10
9秒前
丘比特应助liuxiaoping采纳,获得10
9秒前
缓慢千易完成签到,获得积分10
9秒前
猪猪hero应助lwl666采纳,获得10
10秒前
漂亮的孤风完成签到,获得积分10
10秒前
8R60d8应助chenhunhun采纳,获得10
10秒前
脑洞疼应助noriZHC采纳,获得10
11秒前
张瑞彬完成签到,获得积分10
12秒前
莉莉发布了新的文献求助10
13秒前
可爱的函函应助颖w采纳,获得10
13秒前
勤恳的访梦完成签到,获得积分20
13秒前
大鱼大鱼完成签到,获得积分10
14秒前
www完成签到 ,获得积分10
14秒前
qsxy发布了新的文献求助10
14秒前
阔落发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960498
求助须知:如何正确求助?哪些是违规求助? 3506752
关于积分的说明 11131877
捐赠科研通 3238932
什么是DOI,文献DOI怎么找? 1789917
邀请新用户注册赠送积分活动 872043
科研通“疑难数据库(出版商)”最低求助积分说明 803128