BookKD: A novel knowledge distillation for reducing distillation costs by decoupling knowledge generation and learning

计算机科学 蒸馏 人工智能 机器学习 熵(时间箭头) 平滑的 间歇精馏 分馏 计算机视觉 量子力学 物理 有机化学 化学
作者
Songling Zhu,Ronghua Shang,Ke Tang,Songhua Xu,Yangyang Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:279: 110916-110916 被引量:11
标识
DOI:10.1016/j.knosys.2023.110916
摘要

Knowledge distillation guides student networks’ training and enhances their performance through excellent teacher networks. However, along with the performance advantages, knowledge distillation also entails a huge computational burden, sometimes tens or even hundreds of times that of traditional training methods. So, this paper designs a book-based knowledge distillation (BookKD) to minimize the costs of knowledge distillation while improving performance. First, a decoupling-based knowledge distillation framework is designed. By decoupling the traditional knowledge distillation process into two independent sub-processes, book-making and book-learning, knowledge distillation can be completed with little resource consumption. Second, a book-making method based on knowledge ensemble and knowledge regularization is developed, which makes books by organizing and processing the knowledge generated by teachers. These books can replace these teachers to provide sufficient knowledge with little distillation costs. Finally, a book-learning method based on entropy dynamic adjustment and label smoothing is designed. The entropy dynamic adjustment optimizes the training loss and mitigates student networks’ difficulty in learning books. Label smoothing alleviates the student network’s over-confidence in ground truth labels, which increases its attention to the class similarity knowledge in books. BookKD is tested on three image classification datasets, CIFAR100, ImageNet and ImageNet100, and an object detection dataset PASCAL VOC 2007. The experiment results indicate the advantages of BookKD in reducing distillation costs and improving distillation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KY发布了新的文献求助10
1秒前
所所应助高天雨采纳,获得10
1秒前
所所应助企福采纳,获得10
1秒前
fengjingjing发布了新的文献求助10
2秒前
2秒前
叶子完成签到,获得积分10
2秒前
3秒前
smottom应助biubiuu采纳,获得10
3秒前
4秒前
zzz完成签到,获得积分10
5秒前
倩Q发布了新的文献求助10
5秒前
樱桃完成签到,获得积分10
6秒前
xiang发布了新的文献求助10
6秒前
NexusExplorer应助原野采纳,获得10
8秒前
9秒前
池林完成签到,获得积分10
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
14秒前
上官若男应助zh1858f采纳,获得10
15秒前
xiaoxioayixi发布了新的文献求助10
16秒前
高天雨发布了新的文献求助10
16秒前
Ecokarster发布了新的文献求助10
18秒前
18秒前
isvv发布了新的文献求助20
21秒前
Jasper应助义气的羽毛采纳,获得10
22秒前
KY完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
天天完成签到,获得积分10
23秒前
原野发布了新的文献求助10
23秒前
海人完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
25秒前
小马甲应助qqqqqq采纳,获得10
26秒前
26秒前
27秒前
Rain完成签到,获得积分10
27秒前
科目三应助liuying采纳,获得10
27秒前
www268完成签到,获得积分10
27秒前
Ecokarster完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785240
求助须知:如何正确求助?哪些是违规求助? 5686798
关于积分的说明 15467120
捐赠科研通 4914318
什么是DOI,文献DOI怎么找? 2645181
邀请新用户注册赠送积分活动 1592988
关于科研通互助平台的介绍 1547323