BookKD: A novel knowledge distillation for reducing distillation costs by decoupling knowledge generation and learning

计算机科学 蒸馏 人工智能 机器学习 熵(时间箭头) 平滑的 间歇精馏 分馏 计算机视觉 量子力学 物理 有机化学 化学
作者
Songling Zhu,Ronghua Shang,Ke Tang,Songhua Xu,Yangyang Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:279: 110916-110916 被引量:11
标识
DOI:10.1016/j.knosys.2023.110916
摘要

Knowledge distillation guides student networks’ training and enhances their performance through excellent teacher networks. However, along with the performance advantages, knowledge distillation also entails a huge computational burden, sometimes tens or even hundreds of times that of traditional training methods. So, this paper designs a book-based knowledge distillation (BookKD) to minimize the costs of knowledge distillation while improving performance. First, a decoupling-based knowledge distillation framework is designed. By decoupling the traditional knowledge distillation process into two independent sub-processes, book-making and book-learning, knowledge distillation can be completed with little resource consumption. Second, a book-making method based on knowledge ensemble and knowledge regularization is developed, which makes books by organizing and processing the knowledge generated by teachers. These books can replace these teachers to provide sufficient knowledge with little distillation costs. Finally, a book-learning method based on entropy dynamic adjustment and label smoothing is designed. The entropy dynamic adjustment optimizes the training loss and mitigates student networks’ difficulty in learning books. Label smoothing alleviates the student network’s over-confidence in ground truth labels, which increases its attention to the class similarity knowledge in books. BookKD is tested on three image classification datasets, CIFAR100, ImageNet and ImageNet100, and an object detection dataset PASCAL VOC 2007. The experiment results indicate the advantages of BookKD in reducing distillation costs and improving distillation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中小蕊发布了新的文献求助10
1秒前
1秒前
1秒前
51区发布了新的文献求助10
2秒前
2秒前
一个球一个蛋儿完成签到,获得积分10
2秒前
4秒前
搞怪的千秋完成签到,获得积分10
4秒前
miaomiao完成签到,获得积分10
5秒前
彭于晏应助754采纳,获得10
6秒前
Yangon发布了新的文献求助10
11秒前
小呆子发布了新的文献求助10
11秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
shell完成签到,获得积分10
12秒前
金汐完成签到,获得积分10
13秒前
布里田完成签到 ,获得积分10
13秒前
yh完成签到,获得积分10
14秒前
yy关闭了yy文献求助
15秒前
科研通AI6.1应助娜娜采纳,获得10
15秒前
无花果应助乐邦采纳,获得10
15秒前
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
Sicily发布了新的文献求助10
17秒前
清修完成签到,获得积分10
17秒前
李健应助Yangon采纳,获得10
18秒前
拉哈80应助痴情的香魔采纳,获得20
19秒前
19秒前
Muncy完成签到 ,获得积分10
21秒前
23秒前
星辰大海应助小呆子采纳,获得10
23秒前
心灵美鑫完成签到 ,获得积分10
23秒前
24秒前
lyk2815完成签到,获得积分10
24秒前
一万朵蝴蝶完成签到,获得积分10
27秒前
汉堡包应助Sicily采纳,获得10
27秒前
28秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060