BookKD: A novel knowledge distillation for reducing distillation costs by decoupling knowledge generation and learning

计算机科学 蒸馏 人工智能 机器学习 熵(时间箭头) 平滑的 间歇精馏 分馏 化学 物理 有机化学 量子力学 计算机视觉
作者
Songling Zhu,Ronghua Shang,Ke Tang,Songhua Xu,Yangyang Li
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:279: 110916-110916 被引量:6
标识
DOI:10.1016/j.knosys.2023.110916
摘要

Knowledge distillation guides student networks’ training and enhances their performance through excellent teacher networks. However, along with the performance advantages, knowledge distillation also entails a huge computational burden, sometimes tens or even hundreds of times that of traditional training methods. So, this paper designs a book-based knowledge distillation (BookKD) to minimize the costs of knowledge distillation while improving performance. First, a decoupling-based knowledge distillation framework is designed. By decoupling the traditional knowledge distillation process into two independent sub-processes, book-making and book-learning, knowledge distillation can be completed with little resource consumption. Second, a book-making method based on knowledge ensemble and knowledge regularization is developed, which makes books by organizing and processing the knowledge generated by teachers. These books can replace these teachers to provide sufficient knowledge with little distillation costs. Finally, a book-learning method based on entropy dynamic adjustment and label smoothing is designed. The entropy dynamic adjustment optimizes the training loss and mitigates student networks’ difficulty in learning books. Label smoothing alleviates the student network’s over-confidence in ground truth labels, which increases its attention to the class similarity knowledge in books. BookKD is tested on three image classification datasets, CIFAR100, ImageNet and ImageNet100, and an object detection dataset PASCAL VOC 2007. The experiment results indicate the advantages of BookKD in reducing distillation costs and improving distillation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wy发布了新的文献求助10
刚刚
英俊的铭应助啦啦啦采纳,获得10
1秒前
1秒前
老刀发布了新的文献求助30
1秒前
zzzz发布了新的文献求助10
1秒前
有魅力的傲松关注了科研通微信公众号
1秒前
2秒前
3秒前
老福贵儿应助ZHAOyifan采纳,获得30
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
LS发布了新的文献求助20
6秒前
温柔柜子应助ceeray23采纳,获得30
6秒前
linghanlan完成签到,获得积分10
7秒前
feb发布了新的文献求助10
7秒前
陈牛逼完成签到 ,获得积分10
7秒前
子新发布了新的文献求助10
8秒前
酷波er应助谷蓝采纳,获得10
8秒前
金金完成签到,获得积分10
8秒前
领导范儿应助多情嘉懿采纳,获得10
9秒前
10秒前
丸橙发布了新的文献求助10
10秒前
传奇3应助wy采纳,获得10
10秒前
852应助炙热晓露采纳,获得10
10秒前
潮鸣完成签到 ,获得积分10
11秒前
啦啦啦完成签到,获得积分20
11秒前
gzh关闭了gzh文献求助
11秒前
11秒前
12秒前
13秒前
柯凌完成签到 ,获得积分20
13秒前
13秒前
14秒前
八九完成签到,获得积分20
14秒前
犹豫草莓完成签到,获得积分10
14秒前
mama完成签到 ,获得积分10
14秒前
Lucas应助yh采纳,获得10
15秒前
浮游应助子新采纳,获得10
15秒前
啦啦啦发布了新的文献求助10
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5144025
求助须知:如何正确求助?哪些是违规求助? 4341830
关于积分的说明 13521491
捐赠科研通 4182277
什么是DOI,文献DOI怎么找? 2293363
邀请新用户注册赠送积分活动 1293893
关于科研通互助平台的介绍 1236661