BookKD: A novel knowledge distillation for reducing distillation costs by decoupling knowledge generation and learning

计算机科学 蒸馏 人工智能 机器学习 熵(时间箭头) 平滑的 间歇精馏 分馏 化学 物理 有机化学 量子力学 计算机视觉
作者
Songling Zhu,Ronghua Shang,Ke Tang,Songhua Xu,Yangyang Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:279: 110916-110916 被引量:6
标识
DOI:10.1016/j.knosys.2023.110916
摘要

Knowledge distillation guides student networks’ training and enhances their performance through excellent teacher networks. However, along with the performance advantages, knowledge distillation also entails a huge computational burden, sometimes tens or even hundreds of times that of traditional training methods. So, this paper designs a book-based knowledge distillation (BookKD) to minimize the costs of knowledge distillation while improving performance. First, a decoupling-based knowledge distillation framework is designed. By decoupling the traditional knowledge distillation process into two independent sub-processes, book-making and book-learning, knowledge distillation can be completed with little resource consumption. Second, a book-making method based on knowledge ensemble and knowledge regularization is developed, which makes books by organizing and processing the knowledge generated by teachers. These books can replace these teachers to provide sufficient knowledge with little distillation costs. Finally, a book-learning method based on entropy dynamic adjustment and label smoothing is designed. The entropy dynamic adjustment optimizes the training loss and mitigates student networks’ difficulty in learning books. Label smoothing alleviates the student network’s over-confidence in ground truth labels, which increases its attention to the class similarity knowledge in books. BookKD is tested on three image classification datasets, CIFAR100, ImageNet and ImageNet100, and an object detection dataset PASCAL VOC 2007. The experiment results indicate the advantages of BookKD in reducing distillation costs and improving distillation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
万能图书馆应助平常心采纳,获得10
1秒前
1111111111应助halona采纳,获得10
1秒前
Xixihaha完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
shi hui发布了新的文献求助30
5秒前
5秒前
涣醒发布了新的文献求助10
6秒前
爱笑的书蝶完成签到,获得积分10
6秒前
7秒前
halona应助文件撤销了驳回
7秒前
8秒前
田様应助jelly采纳,获得10
9秒前
冷冷发布了新的文献求助10
9秒前
louis136116完成签到,获得积分10
9秒前
9秒前
10秒前
ren发布了新的文献求助10
10秒前
地平线发布了新的文献求助10
10秒前
饭老师发布了新的文献求助10
10秒前
tiger完成签到,获得积分10
11秒前
FashionBoy应助涣醒采纳,获得10
11秒前
11秒前
陈增飞发布了新的文献求助10
12秒前
kk发布了新的文献求助10
12秒前
12秒前
苗条的蓉完成签到 ,获得积分20
13秒前
16秒前
boyeer完成签到,获得积分10
16秒前
AptRank发布了新的文献求助10
16秒前
ficus_min发布了新的文献求助10
16秒前
苗条的蓉关注了科研通微信公众号
17秒前
晏子发布了新的文献求助10
18秒前
19秒前
涣醒完成签到,获得积分10
19秒前
sunaijia应助如意忆秋采纳,获得10
20秒前
田様应助ren采纳,获得10
20秒前
21秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3348373
求助须知:如何正确求助?哪些是违规求助? 2974612
关于积分的说明 8664853
捐赠科研通 2655245
什么是DOI,文献DOI怎么找? 1453926
科研通“疑难数据库(出版商)”最低求助积分说明 673171
邀请新用户注册赠送积分活动 663370