BookKD: A novel knowledge distillation for reducing distillation costs by decoupling knowledge generation and learning

计算机科学 蒸馏 人工智能 机器学习 熵(时间箭头) 平滑的 间歇精馏 分馏 计算机视觉 量子力学 物理 有机化学 化学
作者
Songling Zhu,Ronghua Shang,Ke Tang,Songhua Xu,Yangyang Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:279: 110916-110916 被引量:11
标识
DOI:10.1016/j.knosys.2023.110916
摘要

Knowledge distillation guides student networks’ training and enhances their performance through excellent teacher networks. However, along with the performance advantages, knowledge distillation also entails a huge computational burden, sometimes tens or even hundreds of times that of traditional training methods. So, this paper designs a book-based knowledge distillation (BookKD) to minimize the costs of knowledge distillation while improving performance. First, a decoupling-based knowledge distillation framework is designed. By decoupling the traditional knowledge distillation process into two independent sub-processes, book-making and book-learning, knowledge distillation can be completed with little resource consumption. Second, a book-making method based on knowledge ensemble and knowledge regularization is developed, which makes books by organizing and processing the knowledge generated by teachers. These books can replace these teachers to provide sufficient knowledge with little distillation costs. Finally, a book-learning method based on entropy dynamic adjustment and label smoothing is designed. The entropy dynamic adjustment optimizes the training loss and mitigates student networks’ difficulty in learning books. Label smoothing alleviates the student network’s over-confidence in ground truth labels, which increases its attention to the class similarity knowledge in books. BookKD is tested on three image classification datasets, CIFAR100, ImageNet and ImageNet100, and an object detection dataset PASCAL VOC 2007. The experiment results indicate the advantages of BookKD in reducing distillation costs and improving distillation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QIZH发布了新的文献求助10
1秒前
可爱的函函应助不是细菌采纳,获得10
1秒前
Tk完成签到,获得积分10
1秒前
1秒前
研友_LN7bvn完成签到,获得积分10
1秒前
O泡发布了新的文献求助10
1秒前
文静雨兰发布了新的文献求助10
2秒前
木木完成签到,获得积分10
3秒前
小吃完成签到,获得积分10
3秒前
3秒前
无花果应助ruogu7采纳,获得10
3秒前
3秒前
调皮的败应助jiangmax采纳,获得10
3秒前
4秒前
QingS应助lichaofan采纳,获得10
4秒前
dx3906发布了新的文献求助10
4秒前
4秒前
smottom应助莫默采纳,获得10
4秒前
合适的天完成签到,获得积分10
6秒前
FashionBoy应助lxl采纳,获得10
6秒前
张张完成签到,获得积分20
6秒前
brd完成签到,获得积分10
7秒前
7秒前
esbd发布了新的文献求助10
8秒前
李爱国应助优美糖豆采纳,获得10
8秒前
ckj完成签到,获得积分10
8秒前
jdndbd关注了科研通微信公众号
8秒前
搜集达人应助范范采纳,获得30
8秒前
sln发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
9秒前
桐桐应助张张采纳,获得10
10秒前
QDDYR完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
11完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776350
求助须知:如何正确求助?哪些是违规求助? 5628713
关于积分的说明 15442059
捐赠科研通 4908468
什么是DOI,文献DOI怎么找? 2641217
邀请新用户注册赠送积分活动 1589167
关于科研通互助平台的介绍 1543851