Elaborated-Structure Awareness SAR Imagery Using Hessian-Enhanced TV Regularization

黑森矩阵 合成孔径雷达 计算机科学 正规化(语言学) 人工智能 特征(语言学) 算法 规范(哲学) 模式识别(心理学) 数学 应用数学 语言学 哲学 政治学 法学
作者
Lei Yang,Minghui Gai,Tengteng Wang,Mengdao Xing
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16
标识
DOI:10.1109/tgrs.2023.3313154
摘要

Due to the sparse feature enhancement only concentrates on strong scatterers of target of interest, the conventional sparsity-driven Synthetic Aperture Radar (SAR) imagery often encounters the loss of elaborated-structure features, where weak scatterers would be overlapped by the sidelobes of strong scatterers. In this paper, an Elaborated-Structure Awareness SAR (ESA-SAR) imaging algorithm is proposed based on Hessian-Enhanced Total Variation (TV) regularization and cooperation. By encoding the Hessian operator onto the prior of the interested target, the high-order information connected with elaborated-structure features of interests can be captured. Different from the conventional high-order formulation that is projected onto Euclidean norm balls, the proposed algorithm employs Schatten norm balls as the projection space, where the high-order structure tensor is established, and the elaborated-structure feature can be extracted under the intended convex regularizer. More specifically, the Hessian-Enhanced TV regularizer is analytically solved under the proximal algorithm considering its non-differentiability. An Eigen-Soft Thresholding (E-ST) operator is derived, so that a closed-form solution for the elaborated-structure feature can be obtained. Moreover, a synergistic multi-task learning framework embedded with the sparse feature enhancement is introduced, in which the elaborated-structure feature can be solved in a cooperative manner. The cooperative learning is guaranteed in terms of both theoretical and practical aspects. Finally, both simulated and raw SAR data are processed to validate the effectiveness of the ESA-SAR algorithm. Comparisons with conventional algorithms examine the superiority of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kelakola完成签到,获得积分10
2秒前
科研通AI5应助你啊什么啊采纳,获得10
2秒前
科研通AI5应助stupidhh采纳,获得10
2秒前
xiongdi521发布了新的文献求助10
3秒前
4秒前
6秒前
小菜白完成签到 ,获得积分10
7秒前
文献求助发布了新的文献求助10
7秒前
abocide完成签到,获得积分20
8秒前
8秒前
10秒前
小鱼儿完成签到,获得积分10
10秒前
还没睡醒完成签到,获得积分10
10秒前
一一发布了新的文献求助10
10秒前
10秒前
NexusExplorer应助hanna采纳,获得10
10秒前
mojito发布了新的文献求助10
12秒前
ding应助负责书竹采纳,获得10
12秒前
今后应助清秀的语堂采纳,获得10
12秒前
zhaolm7016完成签到,获得积分10
13秒前
14秒前
15秒前
张达发布了新的文献求助10
15秒前
CodeCraft应助呆呆的猕猴桃采纳,获得10
15秒前
WL关闭了WL文献求助
16秒前
谷大喵唔发布了新的文献求助10
16秒前
17秒前
17秒前
贾小云完成签到,获得积分10
18秒前
Akim应助一一采纳,获得10
18秒前
WXR0721完成签到,获得积分10
18秒前
zj完成签到,获得积分20
18秒前
LZQ应助冒险寻羊采纳,获得30
19秒前
无限猕猴桃完成签到,获得积分10
19秒前
seannnnnnn发布了新的文献求助10
19秒前
畅畅发布了新的文献求助10
20秒前
5Hz发布了新的文献求助10
20秒前
54zxy完成签到,获得积分10
21秒前
CipherSage应助Aurora采纳,获得30
21秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542648
求助须知:如何正确求助?哪些是违规求助? 3120011
关于积分的说明 9341267
捐赠科研通 2818101
什么是DOI,文献DOI怎么找? 1549346
邀请新用户注册赠送积分活动 722106
科研通“疑难数据库(出版商)”最低求助积分说明 712944