Solving nonlinear equation systems based on evolutionary multitasking with neighborhood-based speciation differential evolution

人类多任务处理 计算机科学 遗传算法 进化算法 差异进化 非线性系统 人口 任务(项目管理) 高斯分布 数学优化 算法 数学 人工智能 生态学 管理 认知心理学 社会学 经济 人口学 物理 生物 量子力学 心理学
作者
Qiong Gu,Shuijia Li,Zuowen Liao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122025-122025 被引量:40
标识
DOI:10.1016/j.eswa.2023.122025
摘要

Locating multiple roots of nonlinear equation systems (NESs) remains a challenging and meaningful task in the numerical optimization community. Although a large number of NES-solving approaches have been put forward, they can only find the roots of one NES at a time. In this paper, we develop a novel NES-solving algorithm based on evolutionary multitasking referred to as EMNES, the goal of which is to effectively find the multiple roots of multiple different NESs simultaneously in a single run through knowledge sharing and transfer. Specifically, firstly a NES-solving framework based on evolutionary multitasking is proposed. Then an efficient multi-task evolutionary algorithm based on neighborhood-based speciation differential evolution for NESs is designed. Finally, combining Gaussian distribution and uniform distribution, a novel resource release strategy is proposed to release the found roots to improve resource utilization and increase population diversity. Numerous experimental results reveal that the proposed EMNES algorithm can achieve a higher root rate and success rate when compared with several well-established algorithms on thirty NESs. Furthermore, simulation results on a more complex test set show that the proposed EMNES is able to locate more roots than most comparison algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pineapple完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
刚刚
曦子曦子发布了新的文献求助10
1秒前
yydd完成签到,获得积分10
1秒前
1秒前
SherlockHolmes完成签到 ,获得积分10
2秒前
2秒前
贵香鱼发布了新的文献求助10
2秒前
术亦旺发布了新的文献求助10
3秒前
CipherSage应助善良的一凤采纳,获得10
3秒前
风趣霆发布了新的文献求助10
3秒前
完美世界应助轩辕唯雪采纳,获得10
3秒前
脑洞疼应助sims采纳,获得10
4秒前
4秒前
4秒前
hui完成签到,获得积分10
5秒前
kiki发布了新的文献求助10
5秒前
今后应助无敌万达阿迪萨采纳,获得30
6秒前
科研小民工应助HJJHJH采纳,获得50
6秒前
Lyl完成签到,获得积分10
6秒前
大个应助结实的问寒采纳,获得10
6秒前
spring发布了新的文献求助10
7秒前
7秒前
8秒前
eason应助安安采纳,获得20
9秒前
9秒前
Hello应助浩然采纳,获得10
10秒前
温酒随行发布了新的文献求助10
10秒前
11秒前
tododoto完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
11秒前
Dong完成签到,获得积分10
12秒前
ZHUTOU发布了新的文献求助10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563968
求助须知:如何正确求助?哪些是违规求助? 3137214
关于积分的说明 9421470
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559926
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717199