Solving nonlinear equation systems based on evolutionary multitasking with neighborhood-based speciation differential evolution

人类多任务处理 计算机科学 遗传算法 进化算法 差异进化 非线性系统 人口 任务(项目管理) 高斯分布 数学优化 算法 数学 人工智能 生态学 管理 认知心理学 社会学 经济 人口学 物理 生物 量子力学 心理学
作者
Qiong Gu,Shuijia Li,Zuowen Liao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122025-122025 被引量:40
标识
DOI:10.1016/j.eswa.2023.122025
摘要

Locating multiple roots of nonlinear equation systems (NESs) remains a challenging and meaningful task in the numerical optimization community. Although a large number of NES-solving approaches have been put forward, they can only find the roots of one NES at a time. In this paper, we develop a novel NES-solving algorithm based on evolutionary multitasking referred to as EMNES, the goal of which is to effectively find the multiple roots of multiple different NESs simultaneously in a single run through knowledge sharing and transfer. Specifically, firstly a NES-solving framework based on evolutionary multitasking is proposed. Then an efficient multi-task evolutionary algorithm based on neighborhood-based speciation differential evolution for NESs is designed. Finally, combining Gaussian distribution and uniform distribution, a novel resource release strategy is proposed to release the found roots to improve resource utilization and increase population diversity. Numerous experimental results reveal that the proposed EMNES algorithm can achieve a higher root rate and success rate when compared with several well-established algorithms on thirty NESs. Furthermore, simulation results on a more complex test set show that the proposed EMNES is able to locate more roots than most comparison algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现实的书易完成签到,获得积分10
刚刚
1秒前
2秒前
3秒前
4秒前
4秒前
luofeng发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
mys完成签到,获得积分10
6秒前
7秒前
叶子发布了新的文献求助10
7秒前
7秒前
8秒前
北彧发布了新的文献求助10
8秒前
狂野忆文发布了新的文献求助10
8秒前
9秒前
狂野忆文发布了新的文献求助10
10秒前
狂野忆文发布了新的文献求助10
10秒前
狂野忆文发布了新的文献求助10
10秒前
狂野忆文发布了新的文献求助10
10秒前
赘婿应助马康辉采纳,获得30
10秒前
狂野忆文发布了新的文献求助10
10秒前
狂野忆文发布了新的文献求助10
10秒前
狂野忆文发布了新的文献求助10
10秒前
狂野忆文发布了新的文献求助10
10秒前
hangfengzi发布了新的文献求助50
12秒前
Coco发布了新的文献求助10
13秒前
叫滚滚发布了新的文献求助20
13秒前
Aaron完成签到,获得积分10
13秒前
果果发布了新的文献求助10
14秒前
Jojo完成签到,获得积分10
14秒前
与我安完成签到,获得积分10
15秒前
长言完成签到 ,获得积分20
15秒前
叶子完成签到,获得积分10
15秒前
脑洞疼应助蜀黍采纳,获得30
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958225
求助须知:如何正确求助?哪些是违规求助? 3504388
关于积分的说明 11118283
捐赠科研通 3235682
什么是DOI,文献DOI怎么找? 1788411
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802565