Genetic Insights into the Risk of Metabolic Syndrome and Its Components on Dementia: A Mendelian Randomization

孟德尔随机化 痴呆 路易氏体型失智症 血管性痴呆 全基因组关联研究 医学 代谢综合征 失智症 路易体 遗传关联 内科学 阿尔茨海默病 疾病 生物信息学 单核苷酸多态性 遗传学 生物 基因型 肥胖 遗传变异 基因
作者
Qiang He,Wenjing Wang,Hao Li,Yang Xiong,Chuanyuan Tao,Lu Ma,Chao You
出处
期刊:Journal of Alzheimer's Disease [IOS Press]
卷期号:96 (2): 725-743 被引量:1
标识
DOI:10.3233/jad-230623
摘要

Background: The role of metabolic syndrome (MetS) on dementia is disputed. Objective: We conducted a Mendelian randomization to clarify whether the genetically predicted MetS and its components are casually associated with the risk of different dementia types. Methods: The genetic predictors of MetS and its five components (waist circumference, hypertension, fasting blood glucose, triglycerides, and high-density lipoprotein cholesterol [HDL-C]) come from comprehensive public genome-wide association studies (GWAS). Different dementia types are collected from the GWAS in the European population. Inverse variance weighting is utilized as the main method, complemented by several sensitivity approaches to verify the robustness of the results. Results: Genetically predicted MetS and its five components are not causally associated with the increasing risk of dementia (all p > 0.05). In addition, no significant association between MetS and its components and Alzheimer’s disease, vascular dementia, frontotemporal dementia, dementia with Lewy bodies, and dementia due to Parkinson’s disease (all p > 0.05), except the association between HDL-C and dementia with Lewy bodies. HDL-C may play a protective role in dementia with Lewy bodies (OR: 0.81, 95% CI: 0.72–0.92, p = 0.0010). Conclusions: From the perspective of genetic variants, our study provides novel evidence that MetS and its components are not associated with different dementia types.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cuicuicui发布了新的文献求助10
刚刚
爆米花应助Jmax采纳,获得10
1秒前
hwq完成签到,获得积分10
1秒前
1秒前
Ava应助SUNSHINE采纳,获得10
1秒前
小二郎应助worried采纳,获得10
1秒前
度yu发布了新的文献求助10
1秒前
善学以致用应助龙慧琳采纳,获得10
2秒前
llllll完成签到,获得积分10
2秒前
Ethereal发布了新的文献求助10
2秒前
某博完成签到 ,获得积分10
3秒前
3秒前
慕青应助阔达摩托采纳,获得10
3秒前
3秒前
852应助化身孤岛的鲸采纳,获得10
4秒前
李爱国应助无限曼易采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
大模型应助悦耳听芹采纳,获得10
6秒前
Akim应助无辜的鼠标采纳,获得20
6秒前
ZMl发布了新的文献求助10
6秒前
7秒前
tj发布了新的文献求助10
7秒前
7秒前
7秒前
向北发布了新的文献求助10
7秒前
豆觉子发布了新的文献求助10
8秒前
热情的大地完成签到,获得积分20
8秒前
8秒前
收费完成签到,获得积分10
9秒前
Kiry完成签到 ,获得积分10
9秒前
9秒前
共享精神应助臭臭采纳,获得10
10秒前
BLAOOW完成签到,获得积分10
10秒前
10秒前
10秒前
spc68应助Marshall采纳,获得10
10秒前
11秒前
Xltox发布了新的文献求助10
11秒前
zzz发布了新的文献求助100
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719629
求助须知:如何正确求助?哪些是违规求助? 5257097
关于积分的说明 15289239
捐赠科研通 4869416
什么是DOI,文献DOI怎么找? 2614807
邀请新用户注册赠送积分活动 1564797
关于科研通互助平台的介绍 1521994