A multi-depot pollution routing problem with time windows in e-commerce logistics coordination

车辆路径问题 计算机科学 禁忌搜索 持续性 背景(考古学) 运筹学 启发式 环境经济学 布线(电子设计自动化) 工程类 生态学 计算机网络 生物 古生物学 人工智能 经济
作者
Mengdi Zhang,Aoxiang Chen,Zhiheng Zhao,George Q. Huang
出处
期刊:Industrial Management and Data Systems [Emerald Publishing Limited]
卷期号:124 (1): 85-119 被引量:6
标识
DOI:10.1108/imds-03-2023-0193
摘要

Purpose This research explores mitigating carbon emissions and integrating sustainability in e-commerce logistics by optimizing the multi-depot pollution routing problem with time windows (MDPRPTW). A proposed model contrasts non-collaborative and collaborative decision-making for order assignment among logistics service providers (LSPs), incorporating low-carbon considerations. Design/methodology/approach The model is substantiated using improved adaptive large neighborhood search (IALNS), tabu search (TS) and oriented ant colony algorithm (OACA) within the context of e-commerce logistics. For model validation, a normal distribution is employed to generate random demand and inputs, derived from the location and requirements files of LSPs. Findings This research validates the efficacy of e-commerce logistics optimization and IALNS, TS and OACA algorithms, especially when demand follows a normal distribution. It establishes that cooperation among LSPs can substantially reduce carbon emissions and costs, emphasizing the importance of integrating sustainability in e-commerce logistics optimization. Research limitations/implications This paper proposes a meta-heuristic algorithm to solve the NP-hard problem. Methodologies such as reinforcement learning can be investigated in future work. Practical implications This research can help logistics managers understand the status of sustainable and cost-effective logistics operations and provide a basis for optimal decision-making. Originality/value This paper describes the complexity of the MDPRPTW model, which addresses both carbon emissions and cost reduction. Detailed information about the algorithm, methodology and computational studies is investigated. The research problem encompasses various practical aspects related to routing optimization in e-commerce logistics, aiming for sustainable development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fangchenxi完成签到,获得积分10
1秒前
月半摘葡萄完成签到,获得积分10
3秒前
3秒前
栗子鱼关注了科研通微信公众号
3秒前
4秒前
4秒前
歪歪发布了新的文献求助10
4秒前
闪闪乘风完成签到 ,获得积分10
5秒前
llllllll完成签到,获得积分20
5秒前
13完成签到,获得积分10
6秒前
7秒前
执梳完成签到 ,获得积分10
7秒前
久9发布了新的文献求助10
8秒前
yu发布了新的文献求助10
9秒前
在水一方应助lppp采纳,获得10
11秒前
默默的芷烟完成签到,获得积分10
14秒前
伯爵完成签到 ,获得积分10
15秒前
请假了完成签到,获得积分10
16秒前
柔之完成签到,获得积分10
17秒前
orixero应助李新颖采纳,获得30
17秒前
研友_VZG7GZ应助YEM采纳,获得10
19秒前
20秒前
20秒前
小鹿斑比完成签到,获得积分10
20秒前
22秒前
勤劳问旋完成签到,获得积分10
22秒前
天气不似预期完成签到,获得积分10
24秒前
沉默白猫发布了新的文献求助10
25秒前
lz发布了新的文献求助10
25秒前
柯一一应助linmo采纳,获得10
25秒前
彪壮的幻丝完成签到 ,获得积分10
25秒前
zhang发布了新的文献求助10
27秒前
传奇3应助aimam采纳,获得20
28秒前
林屿溪完成签到,获得积分10
29秒前
小二郎应助茴茴采纳,获得10
30秒前
adi完成签到,获得积分10
30秒前
小菜鸡完成签到,获得积分20
35秒前
36秒前
wanci应助frank采纳,获得10
36秒前
爆米花应助於茗采纳,获得10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966882
求助须知:如何正确求助?哪些是违规求助? 3512358
关于积分的说明 11162784
捐赠科研通 3247203
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432