A multi-depot pollution routing problem with time windows in e-commerce logistics coordination

车辆路径问题 计算机科学 禁忌搜索 持续性 背景(考古学) 运筹学 启发式 环境经济学 布线(电子设计自动化) 工程类 生态学 计算机网络 生物 古生物学 人工智能 经济
作者
Mengdi Zhang,Aoxiang Chen,Zhiheng Zhao,George Q. Huang
出处
期刊:Industrial Management and Data Systems [Emerald (MCB UP)]
卷期号:124 (1): 85-119 被引量:6
标识
DOI:10.1108/imds-03-2023-0193
摘要

Purpose This research explores mitigating carbon emissions and integrating sustainability in e-commerce logistics by optimizing the multi-depot pollution routing problem with time windows (MDPRPTW). A proposed model contrasts non-collaborative and collaborative decision-making for order assignment among logistics service providers (LSPs), incorporating low-carbon considerations. Design/methodology/approach The model is substantiated using improved adaptive large neighborhood search (IALNS), tabu search (TS) and oriented ant colony algorithm (OACA) within the context of e-commerce logistics. For model validation, a normal distribution is employed to generate random demand and inputs, derived from the location and requirements files of LSPs. Findings This research validates the efficacy of e-commerce logistics optimization and IALNS, TS and OACA algorithms, especially when demand follows a normal distribution. It establishes that cooperation among LSPs can substantially reduce carbon emissions and costs, emphasizing the importance of integrating sustainability in e-commerce logistics optimization. Research limitations/implications This paper proposes a meta-heuristic algorithm to solve the NP-hard problem. Methodologies such as reinforcement learning can be investigated in future work. Practical implications This research can help logistics managers understand the status of sustainable and cost-effective logistics operations and provide a basis for optimal decision-making. Originality/value This paper describes the complexity of the MDPRPTW model, which addresses both carbon emissions and cost reduction. Detailed information about the algorithm, methodology and computational studies is investigated. The research problem encompasses various practical aspects related to routing optimization in e-commerce logistics, aiming for sustainable development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
汉堡包应助wuxunxun2015采纳,获得10
3秒前
打打应助wangcc采纳,获得10
4秒前
shiyi发布了新的文献求助30
4秒前
英姑应助独特乘云采纳,获得10
6秒前
梦回唐朝发布了新的文献求助10
6秒前
科目三应助苹什么采纳,获得10
7秒前
羊羊羊完成签到 ,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
852应助才疏采纳,获得10
9秒前
桐桐应助Shen采纳,获得10
10秒前
mokesun完成签到,获得积分10
11秒前
Ava应助香菜采纳,获得10
11秒前
爆米花应助Literaturecome采纳,获得10
11秒前
12秒前
12秒前
14秒前
shiyi完成签到,获得积分10
14秒前
橙C发布了新的文献求助10
16秒前
16秒前
R沫完成签到,获得积分10
16秒前
HolmeTao完成签到 ,获得积分10
17秒前
18秒前
18秒前
19秒前
紧张的幻桃完成签到 ,获得积分10
19秒前
Chnious发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
耗子发布了新的文献求助10
20秒前
科研通AI2S应助循笛采纳,获得10
20秒前
21秒前
21秒前
21秒前
VIAI发布了新的文献求助10
22秒前
hu发布了新的文献求助10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770329
求助须知:如何正确求助?哪些是违规求助? 5584051
关于积分的说明 15423929
捐赠科研通 4903821
什么是DOI,文献DOI怎么找? 2638379
邀请新用户注册赠送积分活动 1586244
关于科研通互助平台的介绍 1541387