正交基
正交性
变形(气象学)
四面体
分解
要素(刑法)
工作(物理)
基础(证据)
数学
投影(关系代数)
基础(线性代数)
计算机科学
几何学
工程类
地质学
物理
算法
机械工程
政治学
化学
法学
海洋学
有机化学
量子力学
作者
Kaixuan Liang,Panxu Sun,Dongwei Wang
标识
DOI:10.1080/15376494.2023.2284255
摘要
AbstractIn order to satisfy the demand of quantitative analysis of deformation properties of arbitrary irregular structures, a deformation decomposition method for arbitrary triangular element and arbitrary tetrahedral element is proposed based on mechanical equilibrium and mathematical orthogonality. The projection coefficients of various basic deformations of the structure can be obtained by applying the deformation decomposition method to the model divided by triangular or tetrahedral element. The quantitative and visual analysis of the structural deformation performance are realized. The work can provide theoretical basis for the orthonormal decomposition of arbitrary irregular elements and greatly improve the orthonormal deformation decomposition method.Keywords: Orthogonal decompositionbasic deformationarbitrary triangular elementarbitrary tetrahedral elementirregular structures Disclosure statementThe authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.Additional informationFundingThis work was supported by the National Natural Science Foundation of China (Grant No. 52208322), the Postdoctoral Science Foundation of China (Grant No. 2022M712905), the Natural Science Foundation of Henan Province (Grant No. 222300420316) and the Key Research Projects of Henan Higher Education Institutions (Grant No. 22A560005).
科研通智能强力驱动
Strongly Powered by AbleSci AI