A Novel Data Fusion Method to Leverage Passively-collected Mobility Data in Generating Spatially-heterogeneous Synthetic Population

杠杆(统计) 人口 传感器融合 数据挖掘 计算机科学 合成数据 数据科学 计量经济学 人工智能 数学 社会学 人口学
作者
Viet-Khoa Vo-Ho,Eui-Jin Kim,Prateek Bansal
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4612180
摘要

Conventional population synthesis methods rely on household travel survey (HTS) data. However, the synthesized population suffers from a low spatial heterogeneity issue due to high data aggregation and low sampling rates of HTS data. Passively collected (PC) data from smartphone devices or transit smart cards have the potential to overcome the limitations of HTS data, thanks to the continuous collection of mobility patterns at a high spatial resolution for a large proportion of the population. However, the mismatched spatial resolution, sampling rate, and attribute information make the fusion of HTS and PC data challenging. This study presents a novel cluster-based data fusion method that exploits the benefits of both HTS and PC data to generate a synthetic population with high spatial heterogeneity. As the number of the value combinations for spatial attributes (e.g., home and work locations) in PC data is much larger than that in HTS data, clustering is adopted to deal with the high-dimensionality issue and link spatial attributes in the two data sources. The data fusion problem is then formulated as tractable multiple low-dimensional optimization subproblems. The properties of the proposed method are analytically derived. Such analytical validation is necessary for an interpretable and trustworthy data fusion, which is infeasible to establish in state-of-the-art deep learning methods. Three experiments are conducted to validate the accuracy, illustrate the data fusion properties, and demonstrate the case study of the proposed method using the HTS and LTE/5G cellular signaling data from Seoul, South Korea.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LIUYONG发布了新的文献求助10
1秒前
1秒前
肖雪依完成签到,获得积分10
1秒前
影子完成签到,获得积分10
2秒前
3秒前
晨珂完成签到,获得积分10
3秒前
Florencia发布了新的文献求助10
5秒前
xiezhuochun发布了新的文献求助10
6秒前
6秒前
同瓜不同命完成签到,获得积分10
8秒前
牛马哥发布了新的文献求助10
9秒前
温婉的松鼠完成签到,获得积分10
9秒前
10秒前
辛勤的寄瑶完成签到,获得积分10
10秒前
Lauren完成签到 ,获得积分10
11秒前
12秒前
忆枫完成签到,获得积分10
16秒前
炒鸡小将发布了新的文献求助10
16秒前
花壳在逃野猪完成签到 ,获得积分10
16秒前
16秒前
银子吃好的完成签到,获得积分10
17秒前
西瓜霜完成签到 ,获得积分10
17秒前
科研废物完成签到 ,获得积分10
19秒前
冬月完成签到,获得积分10
19秒前
19秒前
马东完成签到,获得积分10
21秒前
搜集达人应助动听的秋白采纳,获得10
21秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
华仔应助炒鸡小将采纳,获得10
23秒前
chizhi完成签到,获得积分10
23秒前
雪雨夜心应助白智妍采纳,获得10
24秒前
祁乐安发布了新的文献求助20
25秒前
fang应助科研通管家采纳,获得10
26秒前
梵高的向日葵完成签到,获得积分10
26秒前
Singularity应助科研通管家采纳,获得10
26秒前
清爽的碧空完成签到,获得积分10
26秒前
天天快乐应助科研通管家采纳,获得10
26秒前
顾矜应助科研通管家采纳,获得10
26秒前
脑洞疼应助科研通管家采纳,获得10
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029